ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a Substantial Molecular Gas Reservoir in a brightest cluster galaxy at z = 1.7

102   0   0.0 ( 0 )
 نشر من قبل Tracy M. A. Webb
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of CO(2-1) emission coincident with the brightest cluster galaxy (BCG) of the high-redshift galaxy cluster SpARCS1049+56, with the Redshift Search Receiver (RSR) on the Large Millimetre Telescope (LMT). We confirm a spectroscopic redshift for the gas of z = 1.7091+/-0.0004, which is consistent with the systemic redshift of the cluster galaxies of z = 1.709. The line is well-fit by a single component Gaussian with a RSR resolution-corrected FWHM of 569+/-63 km/s. We see no evidence for multiple velocity components in the gas, as might be expected from the multiple image components seen in near-infrared imaging with the Hubble Space Telescope. We measure the integrated flux of the line to be 3.6+/-0.3 Jy km/s and, using alpha_CO = 0.8 Msun (K km s^-1 pc^2)^-1 we estimate a total molecular gas mass of 1.1+/-0.1x10^11 Msun and a M_H2/M_star ~ 0.4. This is the largest gas reservoir detected in a BCG above z > 1 to date. Given the infrared-estimated star formation rate of 860+/-130 Msun/yr, this corresponds to a gas depletion timescale of ~0.1Gyr. We discuss several possible mechanisms for depositing such a large gas reservoir to the cluster center -- e.g., a cooling flow, a major galaxy-galaxy merger or the stripping of gas from several galaxies -- but conclude that these LMT data are not sufficient to differentiate between them.



قيم البحث

اقرأ أيضاً

Based on ALMA Band 3 observations of the CO(2-1) line transition, we report the discovery of three new gas-rich (M_H2 ~ 1.5-4.8 x 10^10 M_sun, SFRs in the range ~5-100 M_sun/yr) galaxies in an overdense region at z=1.7, that already contains eight sp ectroscopically confirmed members. This leads to a total of 11 confirmed overdensity members, within a projected distance of ~ 1.15 Mpc and in a redshift range of Dz = 0.012. Under simple assumptions, we estimate that the system has a total mass of >= 3-6 x 10^13 M_sun, and show that it will likely evolve into a >~ 10^14 M_sun cluster at z = 0. The overdensity includes a powerful Compton-thick Fanaroff-Riley type II (FRII) radio-galaxy, around which we discovered a large molecular gas reservoir (M_H2 ~ 2 x 10^11 M_sun). We fitted the FRII resolved CO emission with a 2-D Gaussian model with major (minor) axis of ~ 27 (~ 17) kpc, that is a factor of ~3 larger than the optical rest-frame emission. Under the assumption of a simple edge-on disk morphology, we find that the galaxy interstellar medium produces a column density towards the nucleus of ~ 5.5 x 10^23 cm^-2. Such a dense ISM may then contribute significantly to the total nuclear obscuration measured in the X-rays (N_(H,X) ~ 1.5 x 10^24 cm^-2) in addition to a small, pc-scale absorber around the central engine. The velocity map of this source unveils a rotational motion of the gas that is perpendicular to the radio-jets. The FRII is located at the center of the projected spatial distribution of the structure members, and its velocity offset from the peak of the redshift distribution is well within the structures velocity dispersion. All this, coupled with the large amount of gas around the FRII, its stellar mass of ~ 3 x 10^11 M_sun, SFR of ~ 200-600 M_sun/yr, and powerful radio-to-X-ray emission, suggests that this source is the likely progenitor of the future brightest cluster galaxy.
We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission of the source RCSGA 032727--132609, a young $z=1.7$ low-metallicity starburst galaxy. The CO(3-2) and CO(6-5) lines, and continuum at rest-fr ame $450,mu m$ are detected and show a resolved structure in the image plane. We use the corresponding lensing model to obtain a source plane reconstruction of the detected emissions revealing intrinsic flux density of $S_{450,mu m}=23.5_{-8.1}^{+26.8}$ $mu$Jy and intrinsic CO luminosities $L_{rm CO(3-2)}=2.90_{-0.23}^{+0.21}times10^{8}$ ${rm K,km,s^{-1},pc^{2}}$ and $L_{rm CO(6-5)}=8.0_{-1.3}^{+1.4}times10^{7}$ ${rm K,km,s^{-1},pc^{2}}$. We used the resolved properties in the source plane to obtain molecular gas and star-formation rate surface densities of $Sigma_{rm H2}=16.2_{-3.5}^{+5.8},{rm M}_{odot},{rm pc}^{-2}$ and $Sigma_{rm SFR}=0.54_{-0.27}^{+0.89},{rm M}_{odot},{rm yr}^{-1},{rm kpc}^{-2}$ respectively. The intrinsic properties of RCSGA 032727--132609 show an enhanced star-formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the ongoing merger-starburst phase scenario. RCSGA 032727--132609 also appears to be a low--density starburst galaxy similar to local blue compact dwarf galaxies, which have been suggested as local analogs to high-redshift low-metallicity starburst systems. Finally, the CO excitation level in the galaxy is consistent with having the peak at ${rm J}sim5$, with a higher excitation concentrated in the star-forming clumps.
We present ALMA Cycle 4 observations of CO(1-0), CO(3-2), and $^{13}$CO(3-2) line emission in the brightest cluster galaxy of RXJ0821+0752. This is one of the first detections of $^{13}$CO line emission in a galaxy cluster. Half of the CO(3-2) line e mission originates from two clumps of molecular gas that are spatially offset from the galactic center. These clumps are surrounded by diffuse emission that extends $8~{rm kpc}$ in length. The detected $^{13}$CO emission is confined entirely to the two bright clumps, with any emission outside of this region lying below our detection threshold. Two distinct velocity components with similar integrated fluxes are detected in the $^{12}$CO spectra. The narrower component ($60~{rm km}~{rm s}^{-1}$ FWHM) is consistent in both velocity centroid and linewidth with $^{13}$CO(3-2) emission, while the broader ($130-160~{rm km}~{rm s}^{-1}$), slightly blueshifted wing has no associated $^{13}$CO(3-2) emission. A simple local thermodynamic model indicates that the $^{13}$CO emission traces $2.1times 10^{9}~{rm M}_odot$ of molecular gas. Isolating the $^{12}$CO velocity component that accompanies the $^{13}$CO emission yields a CO-to-H$_2$ conversion factor of $alpha_{rm CO}=2.3~{rm M}_{odot}~({rm K~km~s^{-1}})^{-1}$, which is a factor of two lower than the Galactic value. Adopting the Galactic CO-to-H$_2$ conversion factor in brightest cluster galaxies may therefore overestimate their molecular gas masses by a factor of two. This is within the object-to-object scatter from extragalactic sources, so calibrations in a larger sample of clusters are necessary in order to confirm a sub-Galactic conversion factor.
Brightest cluster galaxies (BCGs) are excellent laboratories to study galaxy evolution in dense Mpc-scale environments. We have observed in CO(1-0), CO(2-1), CO(3-2), or CO(4-3), with the IRAM-30m, 18 BCGs at $zsim0.2-0.9$ that are drawn from the CLA SH survey. Our sample includes RX1532, which is our primary target, being among the BCGs with the highest star formation rate (SFR$gtrsim100~M_odot$/yr) in the CLASH sample. We unambiguously detected both CO(1-0) and CO(3-2) in RX1532, yielding a large reservoir of molecular gas, $M_{H_2}=(8.7pm1.1)times10^{10}~M_odot$, and a high level of excitation $r_{31}=0.75pm0.12$. A morphological analysis of the HST I-band image of RX1532 reveals the presence of clumpy substructures both within and outside the half-light radius $r_e=(11.6pm0.3)$ kpc, similarly to those found independently both in ultraviolet and in H$_alpha$ in previous work. We tentatively detected CO(1-0) or CO(2-1) in four other BCGs, with molecular gas reservoirs in the range $M_{H_2}=2times10^{10-11} M_odot$. For the remaining 13 BCGs we set robust upper limits of $M_{H_2}/M_starlesssim0.1$, which are among the lowest molecular gas to stellar mass ratios found for distant ellipticals and BCGs. By comparison with distant cluster galaxies observed in CO our study shows that RX1532 ($M_{H_2}/M_star = 0.40pm0.05$) belongs to the rare population of star forming and gas-rich BCGs in the distant universe. By using available X-ray based estimates of the central intra-cluster medium entropy, we show that the detection of large reservoirs of molecular gas $M_{H_2}gtrsim10^{10}~M_odot$ in distant BCGs is possible when the two conditions are met: i) high SFR and ii) low central entropy, which favors the condensation and the inflow of gas onto the BCGs themselves, similarly to what has been previously found for some local BCGs.
We have discovered an optically rich galaxy cluster at z=1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey , (SpARCS), and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of Ngal(500kpc) = 30+/-8 implies a total halo mass, within 500kpc, of ~3.8+/-1.2 x 10^14 Msun, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada-France-Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope (HST). The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with LIR = 6.2+/-0.9 x 10^12 Lsun. The detection of polycyclic aromatic hydrocarbons (PAHs) at z=1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ~860+/-30 Msun/yr. The optical source corresponding to the IR emission is likely a chain of of > 10 individual clumps arranged as beads on a string over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا