ترغب بنشر مسار تعليمي؟ اضغط هنا

Latest results on gamma-ray pulsars with Fermi

76   0   0.0 ( 0 )
 نشر من قبل Pablo M. Saz Parkinson
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi Large Area Telescope (LAT) has been scanning the gamma-ray sky since 2008. The number of pulsars detected by the LAT now exceeds 200, making them by far the largest class of Galactic gamma-ray emitters. I discuss some of the latest pulsar discoveries made by the LAT, in particular those made since the release of the Pass 8 data.


قيم البحث

اقرأ أيضاً

The Large Area Telescope (LAT) on the Fermi satellite is the first gamma-ray instrument to discover pulsars directly via their gamma-ray emission. Roughly one third of the 117 gamma-ray pulsars detected by the LAT in its first three years were discov ered in blind searches of gamma-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in gamma-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for gamma-ray millisecond pulsars (MSPs) and gamma-ray pulsars around the Galactic Center. Finally, I outline the prospects for future gamma-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.
104 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
The Large Area Telescope (LAT) on board the Fermi satellite has detected ~120 pulsars above 100 MeV. While most gamma-ray pulsars have spectra that are well modeled by a power law with an exponential cut-off at around a few GeV, some show significant pulsed high-energy (HE, >10 GeV) emission. I present a study of HE emission from LAT gamma-ray pulsars and discuss prospects for the detection of pulsations at very high energies (VHE, >100 GeV) with ground-based instruments.
160 - M. L. Ahnen 2019
The HAWC Collaboration released the 2HWC catalog of TeV sources, in which 19 show no association with any known high-energy (HE; E > 10 GeV) or very-high-energy (VHE; E > 300 GeV) sources. This catalog motivated follow-up studies by both the MAGIC an d Fermi-LAT observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between HAWC, MAGIC and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084* and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degree extension (at 95% confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, while a simply minimum extension of 0.16 degrees (at 95% confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail.
The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا