ترغب بنشر مسار تعليمي؟ اضغط هنا

The Faint Young Sun and Faint Young Stars Paradox

100   0   0.0 ( 0 )
 نشر من قبل Petrus Martens
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Petrus C. Martens




اسأل ChatGPT حول البحث

The purpose of this paper is to explore a resolution for the Faint Young Sun Paradox that has been mostly rejected by the community, namely the possibility of a somewhat more massive young Sun with a large mass loss rate sustained for two to three billion years. This would make the young Sun bright enough to keep both the terrestrial and Martian oceans from freezing, and thus resolve the paradox. It is found that a large and sustained mass loss is consistent with the well observed spin-down rate of Sun-like stars, and indeed may be required for it. It is concluded that a more massive young Sun must be considered a plausible hypothesis.

قيم البحث

اقرأ أيضاً

Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here we compare, as a function of stellar rotation rate ($Omega$), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of the stellar cosmic ray spectrum as a function of stellar rotation. The maximum stellar cosmic ray energy increases with increasing rotation i.e., towards more active/younger stars. We find that stellar cosmic rays dominate over Galactic cosmic rays in the habitable zone at the pion threshold energy for all stellar ages considered ($t_*=0.6-2.9,$Gyr). However, even at the youngest age, $t_*=0.6,$Gyr, we estimate that $gtrsim,80$MeV stellar cosmic ray fluxes may still be transient in time. At $sim1,$Gyr when life is thought to have emerged on Earth, we demonstrate that stellar cosmic rays dominate over Galactic cosmic rays up to $sim$4$,$GeV energies during flare events. Our results for $t_*=0.6,$Gyr ($Omega = 4Omega_odot$) indicate that $lesssim$GeV stellar cosmic rays are advected from the star to 1$,$au and are impacted by adiabatic losses in this region. The properties of the inner solar wind, currently being investigated by the Parker Solar Probe and Solar Orbiter, are thus important for accurate calculations of stellar cosmic rays around young Sun-like stars.
Context: Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 AU. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods : We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 micron detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks<4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the phi 1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is ~8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusion: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model.
Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (<2.5 Jy) to faint (>5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. The PACS faint star sample has allowed a comprehensive sensitivity assessment of the PACS photometer. Accurate photometry allows us to establish a set of five FIR primary standard candidates, namely alpha Ari, epsilon Lep, omega,Cap, HD41047 and 42Dra, which are 2 -- 20 times fainter than the faintest PACS fiducial standard (gamma Dra) with absolute accuracy of <6%. For three of these primary standard candidates, essential stellar parameters are known, meaning that a dedicated flux model code may be run.
87 - Aleks Scholz 2019
We investigate four young, but non-accreting, very low mass stars in Orion, which show irregular eclipses by circumstellar dust. The eclipses are not recurring periodically, are variable in depth, lack a flat bottom, and their duration is comparable to the typical timescale between eclipses. The dimming is associated with reddening consistent with dust extinction. Taken together this implies the presence of rings around these four stars, with radii ranging from 0.01 to 40 AU, comprised of optically thin dust clouds. The stars also show IR excess indicating the presence of evolved circumstellar disks, with orders of magnitude more material than needed for the eclipses. However, the rings need to cover an opening angle of about 20 degrees to explain how common these variable stars are in the coeval population in the same region, which is more extended than a typical disk. Thus, we propose that the rings may not be part of the disks, but instead separate structures with larger scale heights. To be sustained over years, the rings need to be replenished by dust from the disk or gravitationally bound to an object (e.g., planets or planetesimals). These four stars belong to a growing and diverse class of post-T Tauri stars with dips or eclipses in their lightcurves. Dusty rings with scale heights exceeding those of disks may be a common phenomenon at stellar ages between 5 and 10 Myr, in the transition from accretion disks to debris disks. These structures could be caused by migrating planets and may be signposts for the presence of young planetary systems.
FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with almost no sign of extended emission beyond the disk. The subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. We used VLT/VISIR to obtain the first spectra that cover the 8-13 $mu$m mid-infrared wavelength range in low-resolution of five recently discovered FUors. Four objects from our sample show the 10 $mu$m silicate feature in emission. We study the shape and strength of the silicate feature in these objects and find that they mostly contain large amorphous grains, suggesting that large grains are typically not settled to the midplane in FUor disks. This is a general characteristic of FUors, as opposed to regular T Tauri-type stars whose disks display anything from pristine small grains to significant grain growth. We classify our targets by determining whether the silicate feature is in emission or in absorption, and confront them with the evolutionary scenarios on the dispersal of the envelopes around young stars. In our sample, all Class II objects exhibit silicate emission, while for Class I objects, the appearance of the feature in emission or absorption depends on the viewing angle with respect to the outflow cavity. This highlights the importance of geometric effects when interpreting the silicate feature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا