ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraviolet spectra of extreme nearby star-forming regions --- approaching a local reference sample for JWST

156   0   0.0 ( 0 )
 نشر من قبل Peter Senchyna
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below $Z_odot/2$. Such tests are particularly important for interpreting the surprising high-ionization UV line emission detected at $z>6$ in recent years. We present HST/COS ultraviolet spectra of ten nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance ($7.8<12+logmathrm{O/H}<8.5$) and present uniformly large specific star formation rates (sSFR $sim 10^2$ $mathrm{Gyr}^{-1}$). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at $zsim 6-7$. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below $12+logmathrm{O/H}lesssim 8.0$ ($Z/Z_odot lesssim 1/5$) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the $mathrm{He^+}$-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

قيم البحث

اقرأ أيضاً

As deep spectroscopic campaigns extend to higher redshifts and lower stellar masses, the interpretation of galaxy spectra depends increasingly upon models for very young stellar populations. Here we present new HST/COS ultraviolet spectroscopy of sev en nearby ($<120$ Mpc) star-forming regions hosting very young stellar populations ($sim$ 4-20 Myr) with optical Wolf-Rayet stellar wind signatures, ideal laboratories in which to test these stellar models. We detect nebular C III] in all seven, but at equivalent widths uniformly $< 10$ {AA}. This suggests that even for very young stellar populations, the highest equivalent width C III] emission at $geq 15$ {AA} is reserved for inefficiently-cooled gas at metallicities at or below that of the SMC. The spectra also reveal strong C IV P-Cygni profiles and broad He II emission formed in the winds of massive stars, including some of the most prominent He II stellar wind lines ever detected in integrated spectra. We find that the latest stellar population synthesis prescriptions with improved treatment of massive stars nearly reproduce the entire range of stellar He II wind strengths observed here. However, we find that these models cannot simultaneously match the strongest wind features alongside the optical nebular line constraints. This discrepancy can be naturally explained by an overabundance of very massive stars produced by a high incidence of binary mass transfer and mergers occurring on short $lesssim 10$ Myr timescales, suggesting these processes may be crucial for understanding the highest-sSFR galaxies in the early Universe. Reproducing both the stellar and nebular light of young systems such as these will be a crucial benchmark for the next generation of stellar population synthesis models.
244 - Laurent Loinard 2009
Multi-epoch radio-interferometric observations of young stellar objects can be used to measure their displacement over the celestial sphere with a level of accuracy that currently cannot be attained at any other wavelength. In particular, the accurac y achieved using carefully calibrated, phase-referenced observations with Very Long Baseline Interferometers such as NRAOs Very Long Baseline Array is better than 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and the proper motion of any radio-emitting young star within several hundred parsecs of the Sun with an accuracy better than a few percent. Using that technique, the mean distances to Taurus, Ophiuchus, Perseus and Orion have already been measured to unprecedented accuracy. With improved telescopes and equipment, the distance to all star-forming regions within 1 kpc of the Sun and beyond, as well as their internal structure and dynamics could be determined. This would significantly improve our ability to compare the observational properties of young stellar objects with theoretical predictions, and would have a major impact on our understanding of low-mass star-formation.
We compile a sample of about 157,000 spaxels from the Mapping Nearby Galaxies at the Apache Point Observatory survey to derive the average dust attenuation curve for subgalactic star-forming regions of local star-forming galaxies (SFGs) in the optica l wavelength, following the method of cite{Calzetti1994}. We obtain a $D_n(4000)$-independent average attenuation curve for spaxels with $1.1leq D_n(4000)<1.3$, which is similar to the one derived from either local starbursts or normal SFGs. We examine whether and how the shape of the average attenuation curve changes with several local and global physical properties. For spaxels with $1.2leq D_n(4000)<1.3$, we find no dependence on either local or global physical properties for the shape of the average attenuation curve. However, for spaxels with younger stellar population ($1.1leq D_n(4000)<1.2$), shallower average attenuation curves are found for star-forming regions with smaller stellar mass surface density, smaller star formation rate surface density, or those residing in the outer region of galaxies. These results emphasize the risk of using one single attenuation curve to correct the dust reddening for all types of star-forming regions, especially for those with fairly young stellar population.
Deep spectroscopy of galaxies in the reionization-era has revealed intense CIII] and CIV line emission (EW $>15-20$ r{A}). In order to interpret the nebular emission emerging at $z>6$, we have begun targeting rest-frame UV emission lines in galaxies with large specific star formation rates (sSFRs) at $1.3<z<3.7$. We find that CIII] reaches the EWs seen at $z>6$ only in large sSFR galaxies with [OIII]+H$beta$ EW $>1500$ r{A}. In contrast to previous studies, we find that many galaxies with intense [OIII] have weak CIII] emission (EW $=5-8$ r{A}), suggesting that the radiation field associated with young stellar populations is not sufficient to power strong CIII]. Photoionization models demonstrate that the spread in CIII] among systems with large sSFRs ([OIII]+H$beta$ EW $>1500$ r{A}) is driven by variations in metallicity, a result of the extreme sensitivity of CIII] to electron temperature. We find that the strong CIII] emission seen at $z>6$ (EW $>15$ r{A}) requires metal poor gas ($simeq0.1 Z_odot$) whereas the weaker CIII] emission in our sample tends to be found at moderate metallicities ($simeq0.3 Z_odot$). The luminosity distribution of the CIII] emitters in our $zsimeq1-3$ sample presents a consistent picture, with stronger emission generally linked to low luminosity systems ($M_{rm{UV}}>-19.5$) where low metallicities are more likely. We quantify the fraction of strong CIII] and CIV emitters at $zsimeq1-3$, providing a baseline for comparison against $z>6$ samples. We suggest that the first UV line detections at $z>6$ can be explained if a significant fraction of the early galaxy population is found at large sSFR ($>200$ Gyr$^{-1}$) and low metallicity ($<0.1 Z_odot$).
We present initial results of the first panoramic search for high-amplitude near-infrared variability in the Galactic Plane. We analyse the widely separated two-epoch K-band photometry in the 5th and 7th data releases of the UKIDSS Galactic Plane Sur vey. We find 45 stars with Delta K > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is not yet included in the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (12 stars). Sources in SFRs show spectral energy distributions (SEDs) that support classification as Young Stellar Objects (YSOs). This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow up of the DR5 sample shows at least four stars with clear characteristics of eruptive pre-main-sequence variables, two of which are deeply embedded. Our results support the recent concept of eruptive variability comprising a continuum of outburst events with different timescales and luminosities, but triggered by a similar physical mechanism involving unsteady accretion. Also, we find what appears to be one of the most variable classical Be stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا