ﻻ يوجد ملخص باللغة العربية
Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles des
We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc