ﻻ يوجد ملخص باللغة العربية
Organized Autotelescopes for Serendipitous Event Survey (OASES) is an optical observation project that aims to detect and investigate stellar occultation events by kilometer-sized trans-Neptunian objects (TNOs). In this project, multiple low-cost observation systems for wide-field and high-speed photometry were developed in order to detect rare and short-timescale stellar occultation events. The observation system consists of commercial off-the-shelf $0.28 {rm m}$ aperture $f/1.58$ optics providing a $2.3 times 1.8$ square-degree field of view. A commercial CMOS camera is coupled to the optics to obtain full-frame imaging with a frame rate greater than $10 {rm Hz}$. As of September 2016, this project exploits two observation systems, which are installed on Miyako Island, Okinawa, Japan. Recent improvements in CMOS technology in terms of high-speed imaging and low readout noise mean that the observation systems are capable of monitoring $sim 2000$ stars in the Galactic plane simultaneously with magnitudes down to ${rm V} sim 13.0$, providing $sim 20%$ photometric precision in light curves with a sampling cadence of $15.4 {rm Hz}$. This number of monitored stars is larger than for any other existing instruments for coordinated occultation surveys. In addition, a precise time synchronization method needed for simultaneous occultation detection is developed using faint meteors. The two OASES observation systems are executing coordinated monitoring observations of a dense stellar field in order to detect occultations by kilometer-sized TNOs for the first time.
Two key areas of emphasis in contemporary experimental exoplanet science are the detailed characterization of transiting terrestrial planets, and the search for Earth analog planets to be targeted by future imaging missions. Both of these pursuits ar
Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8-m class telescopes. The vAPP is an geometric-phase patterned coronagraph that i
The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarisation anisotropies in the CMB at angular scales around the l=100 recombination peak. Systematic errors make ground-based observ
The Planetary Systems Imager (PSI) is a proposed instrument for the Thirty Meter Telescope (TMT) that provides an extreme adaptive optics (AO) correction to a multi-wavelength instrument suite optimized for high contrast science. PSIs broad range of
We examine data from the Murchison Widefield Array (MWA) in the frequency range 72 -- 102 MHz for a field-of-view that serendipitously contained the interstellar object Oumuamua on 2017 November 28. Observations took place with time resolution of 0.5