ترغب بنشر مسار تعليمي؟ اضغط هنا

An in situ comparison of electron acceleration at collisionless shocks under differing upstream magnetic field orientations

52   0   0.0 ( 0 )
 نشر من قبل Adam Masters
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturns bow shock has revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream-downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ~100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.

قيم البحث

اقرأ أيضاً

Using a three dimensional relativistic particle-in-cell code we have performed numerical experiments of plasma shells colliding at relativistic velocities. Such scenarios are found in many astrophysical objects e.g. the relativistic outflow from gamm a ray bursts, active galactic nuclei jets and supernova remnants. We show how a Weibel-like two-stream instability is capable of generating small-scale magnetic filaments with strength up to percents of equipartition. Such field topology is ideal for the generation of jitter radiation as opposed to synchrotron radiation. We also explain how the field generating mechanism involves acceleration of electrons to power law distributions (N(E)~E^(-p))through a non-Fermi acceleration mechanism. The results add to our understanding of collisionless shocks.
The outflows from gamma ray bursts, active galactic nuclei and relativistic jets in general interact with the surrounding media through collisionless shocks. With three dimensional relativistic particle-in-cell simulations we investigate such shocks. The results from these experiments show that small--scale magnetic filaments with strengths of up to percents of equipartition are generated and that electrons are accelerated to power law distributions N(E)~E^{-p} in the vicinity of the filaments through a new acceleration mechanism. The acceleration is locally confined, instantaneous and differs from recursive acceleration processes such as Fermi acceleration. We find that the proposed acceleration mechanism competes with thermalization and becomes important at high Lorentz factors.
We study diffusive shock acceleration (DSA) of electrons in non-relativistic quasi-perpendicular shocks using self-consistent one-dimensional particle-in-cell (PIC) simulations. By exploring the parameter space of sonic and Alfv{e}nic Mach numbers we find that high Mach number quasi-perpendicular shocks can efficiently accelerate electrons to power-law downstream spectra with slopes consistent with DSA prediction. Electrons are reflected by magnetic mirroring at the shock and drive non-resonant waves in the upstream. Reflected electrons are trapped between the shock front and upstream waves and undergo multiple cycles of shock drift acceleration before the injection into DSA. Strong current-driven waves also temporarily change the shock obliquity and cause mild proton pre-acceleration even in quasi-perpendicular shocks, which otherwise do not accelerate protons. These results can be used to understand nonthermal emission in supernova remnants and intracluster medium in galaxy clusters.
102 - M. Lemoine 2014
The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of charge neutral filaments carrying a current of the same polarity, oriented along the perpendicular current. This ``current-driven filamentation instability grows faster than any other instability studied so far upstream of relativistic shocks, with a growth rate comparable to the plasma frequency. Furthermore, the compensation of the current is associated with a slow-down of the ambient plasma as it penetrates the shock precursor (as viewed in the shock rest frame). This slow-down of the plasma implies that the ``current driven filamentation instability can grow for any value of the shock Lorentz factor, provided the magnetization sigma <~ 10^{-2}. We argue that this instability explains the results of recent particle-in-cell simulations in the mildly magnetized regime.
Using large-scale fully-kinetic two-dimensional particle-in-cell simulations, we investigate the effects of shock rippling on electron acceleration at low-Mach-number shocks propagating in high-$beta$ plasmas, in application to merger shocks in galax y clusters. We find that the electron acceleration rate increases considerably when the rippling modes appear. The main acceleration mechanism is stochastic shock-drift acceleration, in which electrons are confined at the shock by pitch-angle scattering off turbulence and gain energy from the motional electric field. The presence of multi-scale magnetic turbulence at the shock transition and the region immediately behind the main shock overshoot is essential for electron energization. Wide-energy non-thermal electron distributions are formed both upstream and downstream of the shock. The maximum energy of the electrons is sufficient for their injection into diffusive shock acceleration. We show for the first time that the downstream electron spectrum has a~power-law form with index $papprox 2.5$, in agreement with observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا