ﻻ يوجد ملخص باللغة العربية
Due to the nature depending on only the gravitational field, microlensing, in principle, provides an important tool to detect faint and even dark brown dwarfs. However, the number of identified brown dwarfs is limited due to the difficulty of the lens mass measurement that is needed to check the substellar nature of the lensing object. In this work, we report a microlensing brown dwarf discovered from the analysis of the gravitational binary-lens event OGLE-2014-BLG-1112. We identify the brown-dwarf nature of the lens companion by measuring the lens mass from the detections of both microlens-parallax and finite-source effects. We find that the companion has a mass of $(3.03 pm 0.78)times 10^{-2} M_odot$ and it is orbiting a solar-type primary star with a mass of $1.07 pm 0.28 M_odot$. The estimated projected separation between the lens components is $9.63 pm 1.33$ au and the distance to the lens is $4.84 pm 0.67$ kpc. We discuss the usefulness of space-based microlensing observations in detecting brown dwarfs through the channel of binary-lens events.
We present the analysis of the binary-microlensing event OGLE-2014-BLG-0289. The event light curve exhibits very unusual five peaks where four peaks were produced by caustic crossings and the other peak was produced by a cusp approach. It is found th
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}s
We report the discovery of a planet-mass companion to the microlens OGLE-2016-BLG-0263L. Unlike most low-mass companions that were detected through perturbations to the smooth and symmetric light curves produced by the primary, the companion was disc
We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light curve signal due to the presence of a Jupiter mass-ratio planet. One unusual feature of this event is that the source star is quite blue, with