ﻻ يوجد ملخص باللغة العربية
Quantifying quantum mechanical uncertainty is vital for the increasing number of experiments that reach the uncertainty limited regime. We present a method for computing tight variance uncertainty relations, i.e., the optimal state-independent lower bound for the sum of the variances for any set of two or more measurements. The bounds come with a guaranteed error estimate, so results of pre-assigned accuracy can be obtained straightforwardly. Our method also works for POVM measurements. Therefore, it can be used for detecting entanglement in noisy environments, even in cases where conventional spin squeezing criteria fail because of detector noise.
The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr
Genuine multipartite entanglement (GME) offers more significant advantages in quantum information compared with entanglement. We propose a sufficient criterion for the detection of GME based on local sum uncertainty relations for chosen observables o
We formulate an entanglement criterion using Peres-Horodecki positive partial transpose operations combined with the Schrodinger-Robertson uncertainty relation. We show that any pure entangled bipartite and tripartite state can be detected by experim
We formulate the conditional-variance uncertainty relations for general qubit systems and arbitrary observables via the inferred uncertainty relations. We find that the lower bounds of these conditional-variance uncertainty relations can be written i
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy