ترغب بنشر مسار تعليمي؟ اضغط هنا

State-independent Uncertainty Relations and Entanglement Detection in Noisy Systems

128   0   0.0 ( 0 )
 نشر من قبل Ren\\'e Schwonnek
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying quantum mechanical uncertainty is vital for the increasing number of experiments that reach the uncertainty limited regime. We present a method for computing tight variance uncertainty relations, i.e., the optimal state-independent lower bound for the sum of the variances for any set of two or more measurements. The bounds come with a guaranteed error estimate, so results of pre-assigned accuracy can be obtained straightforwardly. Our method also works for POVM measurements. Therefore, it can be used for detecting entanglement in noisy environments, even in cases where conventional spin squeezing criteria fail because of detector noise.



قيم البحث

اقرأ أيضاً

The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr l-Lieb inequality is closer to equality than the usual Bia{l}ynicki-Birula and Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how a Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy.
117 - Jun Li , Lin Chen 2021
Genuine multipartite entanglement (GME) offers more significant advantages in quantum information compared with entanglement. We propose a sufficient criterion for the detection of GME based on local sum uncertainty relations for chosen observables o f subsystems. We apply the criterion to detect the GME properties of noisy $n$-partite W state when $n = 3, 4, 5$ and $6$, and find that the criterion can detect more noisy W states when $n$ ranges from 4 to 6. Moreover, the criterion is also used to detect the genuine entanglement of $3$-qutrit state. The result is stronger than that based on GME concurrence and fisher information.
We formulate an entanglement criterion using Peres-Horodecki positive partial transpose operations combined with the Schrodinger-Robertson uncertainty relation. We show that any pure entangled bipartite and tripartite state can be detected by experim entally measuring mean values and variances of specific observables. Those observables must satisfy a specific condition in order to be used, and we show their general form in the $2times 2$ (two qubits) dimension case. The criterion is applied on a variety of physical systems including bipartite and multipartite mixed states and reveals itself to be stronger than the Bell inequalities and other criteria. The criterion also work on continuous variable cat states and angular momentum states of the radiation field.
We formulate the conditional-variance uncertainty relations for general qubit systems and arbitrary observables via the inferred uncertainty relations. We find that the lower bounds of these conditional-variance uncertainty relations can be written i n terms of entanglement measures including concurrence, $G$ function, quantum discord quantified via local quantum uncertainty in different scenarios. We show that the entanglement measures reduce these bounds, except quantum discord which increases them. Our analysis shows that these correlations of quantumness measures play different roles in determining the lower bounds for the sum and product conditional variance uncertainty relations. We also explore the violation of local uncertainty relations in this context and in an interference experiment.
154 - Xuena Zhu , Shaoming Fei 2014
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا