ﻻ يوجد ملخص باللغة العربية
We present a summary of the campaign of remote observations that supported the European Space Agencys Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosettas arrival until nearly the end of mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft, and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively `well behaved comet, typical of Jupiter family comets and with activity patterns that repeat from orbit-to-orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends -- in this paper we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies.
We present observations of comet 67P/Churyumov-Gerasimenko acquired in support of the $Rosetta$ mission. We obtained usable data on 68 nights from 2014 September until 2016 May, with data acquired regularly whenever the comet was observable. We colle
The first 1000 km of the ion tail of comet 67P/Churyumov-Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comet
COSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{
Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission
The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and er