ترغب بنشر مسار تعليمي؟ اضغط هنا

de Haas-van Alphen measurement of the antiferromagnet URhIn$_5$

113   0   0.0 ( 0 )
 نشر من قبل Jing Fei Yu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a de Haas-van Alphen (dHvA) measurement performed on the recently discovered antiferromagnet URhIn$_5$ ($T_N$ = 98 K), a 5textit{f}-analogue of the well studied heavy fermion antiferromagnet CeRhIn$_5$. The Fermi surface is found to consist of four surfaces: a roughly spherical pocket $beta$, with $F_beta simeq 0.3$ kT; a pillow-shaped closed surface, $alpha$, with $F_alpha simeq 1.1$ kT; and two higher frequencies $gamma_1$ with $F_{gamma_1} simeq 3.2$ kT and $gamma_2$ with $F_{gamma_2} simeq 3.5$ kT that are seen only near the textit{c}-axis, and that may arise on cylindrical Fermi surfaces. The measured cyclotron masses range from 1.9 $m_e$ to 4.3 $m_e$. A simple LDA+SO calculation performed for the paramagnetic ground state shows a very different Fermi surface topology, demonstrating a need for more advanced electronic structure calculations.



قيم البحث

اقرأ أيضاً

We have performed de Haas-van Alphen (dHvA) measurements of the heavy-fermion superconductor CeCoIn$_5$ down to 2 mK above the upper critical field. We find that the dHvA amplitudes show an anomalous suppression, concomitantly with a shift of the dHv A frequency, below the transition temperature $T_{rm n}=20$ mK. We suggest that the change is owing to magnetic breakdown caused by a field-induced antiferromagnetic (AFM) state emerging below $T_{rm n}$, revealing the origin of the field-induced quantum critical point (QCP) in CeCoIn$_5$. The field dependence of $T_{rm n}$ is found to be very weak for 7--10 T, implying that an enhancement of AFM order by suppressing the critical spin fluctuations near the AFM QCP competes with the field suppression effect on the AFM phase. We suggest that the appearance of a field-induced AFM phase is a generic feature of unconventional superconductors, which emerge near an AFM QCP, including CeCoIn$_5$, CeRhIn$_5$, and high-$T_{rm c}$ cuprates.
268 - C. Capan , Y-J. Jo , L. Balicas 2010
We report the results of de-Haas-van-Alphen (dHvA) measurements in Cd doped CeCoIn$_5$ and LaCoIn$_5$. Cd doping is known to induce an antiferromagnetic order in the heavy fermion superconductor CeCoIn$_5$, whose effect can be reversed with applied p ressure. We find a slight but systematic change of the dHvA frequencies with Cd doping in both compounds, reflecting the chemical potential shift due to the addition of holes. The frequencies and effective masses are close to those found in the nominally pure compounds with similar changes apparent in the Ce and La compounds with Cd substitution. We observe no abrupt changes to the Fermi surface in the high field paramagnetic state for $x sim x_c$ corresponding to the onset of antiferromagnetic ordering at H=0 in CeCo(In$_{1-x}$Cd$_x$)$_5$. Our results rule out $f-$electron localization as the mechanism for the tuning of the ground state in CeCoIn$_5$ with Cd doping.
211 - Kejie Fang , Shanhui Fan 2013
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effe ct magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.
162 - M. Brasse , L. Chioncel , J. Kunes 2013
We report the angular dependence of three distinct de Haas-van Alphen (dHvA) frequencies of the torque magnetization in the itinerant antiferromagnet CrB2 at temperatures down to 0.3K and magnetic fields up to 14T. Comparison with the calculated Ferm i surface of nonmagnetic CrB2 suggests that two of the observed dHvA oscillations arise from electron-like Fermi surface sheets formed by bands with strong B-px,y character which should be rather insensitive to exchange splitting. The measured effective masses of these Fermi surface sheets display strong enhancements of up to a factor of two over the calculated band masses which we attribute to electron-phonon coupling and electronic correlations. For the temperature and field range studied, we do not observe signatures reminiscent of the heavy d-electron bands expected for antiferromagnetic CrB2. In view that the B-p bands are at the heart of conventional high-temperature superconductivity in the isostructural MgB2, we consider possible implications of our findings for nonmagnetic CrB2 and an interplay of itinerant antiferromagnetism with superconductivity.
The field of topological electronic materials has seen rapid growth in recent years, in particular with the increasing number of weakly interacting systems predicted and observed to host topologically non-trivial bands. Given the broad appearance of topology in such systems, it is expected that correlated electronic systems should also be capable of hosting topologically non-trivial states. Interest in correlated platforms is heightened by the prospect that collective behavior therein may give rise to new types of topological states and phenomena not possible in non-interacting systems. However, to date only a limited number of correlated topological materials have been definitively reported due to both the challenge in calculation of their electronic properties and the experimental complexity of correlation effects imposed on the topological aspects of their electronic structure. Here, we report a de Haas-van Alphen (dHvA) study of the recently discovered kagome metal Fe$_3$Sn$_2$ mapping the massive Dirac states strongly coupled to the intrinsic ferromagnetic order. We observe a pair of quasi-two-dimensional Fermi surfaces arising from the massive Dirac states previously detected by spectroscopic probes and show that these band areas and effective masses are systematically modulated by the rotation of the ferromagnetic moment. Combined with measurements of Berry curvature induced Hall conductivity, we find that along with the Dirac fermion mass, velocity, and energy are suppressed with rotation of the moment towards the kagome plane. These observations demonstrate that strong coupling of magnetic order to electronic structure similar to that observed in elemental ferromagnets can be extended to topologically non-trivial electronic systems, suggesting pathways for connecting topological states to robust spintronic technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا