ﻻ يوجد ملخص باللغة العربية
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large-Magellanic-Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young ($sim10$-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
The determination of the metal abundances in the neutral interstellar medium of dwarf star-forming galaxies is a key step in understanding their physical and chemical evolution. This type of investigation has been possible in the last 5 years thanks
We present new results from near-infrared spectroscopy with Keck/MOSFIRE of [OIII]-selected galaxies at $zsim3.2$. With our $H$ and $K$-band spectra, we investigate the interstellar medium (ISM) conditions, such as ionization states and gas metallici
Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivi
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We
The spectral index of synchrotron emission is an important parameter in understanding the properties of cosmic ray electrons (CREs) and the interstellar medium (ISM). We determine the synchrotron spectral index ($alpha_{rm nt}$) of four nearby star-f