ﻻ يوجد ملخص باللغة العربية
While it is well established that ionic conduction in lithium aluminosilicates proceeds via hopping of Li ions, the nature of the various hoping-based mechanisms in different temperature regimes has not been fully elucidated. The difficulties associated with investigating the conduction have to do with the presence of grains and grain boundaries of different orientations in these usually polycrystalline materials. Herein, we use electrochemical impedance spectroscopy (EIS) to investigate the ion conduction mechanisms in -eucryptite, which is a prototypical lithium aluminosilicate. In the absence of significant structural transitions in grain boundaries, we have found that there are three conduction regimes for the one-dimensional ionic motion along the c axis channels in the grains, and determined the activation energies for each of these temperature regimes. Activation energies computed from molecular statics calculations of the potential energy landscape encountered by Li ions suggest that at temperatures below 440 {deg}C conduction proceeds via cooperative or correlated motion, in agreement with established literature. Between 440 {deg}C and 500{deg}C, the activation barriers extracted from EIS measurements are large and consistent with those from atomistic calculations for uncorrelated Li ion hopping. Above 500 {deg}C the activation barriers decrease significantly, which indicates that after the transition to the Li-disordered phase of -eucryptite, the Li ion motion largely regains the correlated character.
Beta eucryptite (LiAlSiO4) shows one-dimensional super-ionic conductivity as well as anisotropic thermal expansion behavior. We have performed inelastic neutron scattering measurements in beta eucryptite over 300 to 900 K and calculated the phonon sp
${beta}$- Eucryptite (LiAlSiO4) is a potential electrolyte for Li- ion battery due to its high Li- ion conductivity and very small volume thermal expansion coefficient. We have performed ab-initio molecular dynamics simulations of $beta$- Eucryptite
Certain alumino-silicates display exotic properties enabled by their framework structure made of corner-sharing tetrahedral rigid units. Using textit{in situ} diamond-anvil cell x-ray diffraction (XRD), we study the pressure-induced transformation of
We report measurements of the dynamics of isolated $^{8}$Li$^{+}$ in single crystal rutile TiO$_{2}$ using $beta$-detected NMR. From spin-lattice relaxation and motional narrowing, we find two sets of thermally activated dynamics: one below 100 K; an
The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching, and thermal cloaking. While this could be achieved by making use of