ﻻ يوجد ملخص باللغة العربية
We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD and LOND, proposed by (Javanmard and Montanari, 2015), which are proved to control the FDR in an online manner. In some (static) model, we show that LORD is optimal in some asymptotic sense, in particular as powerful as the (static) Benjamini-Hochberg procedure to first asymptotic order. We also quantify the performance of LOND. Some numerical experiments complement our theory.
We study a stylized multiple testing problem where the test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We first show that, in the normal means model where the test statistics are norma
In a multiple testing framework, we propose a method that identifies the interval with the highest estimated false discovery rate of P-values and rejects the corresponding null hypotheses. Unlike the Benjamini-Hochberg method, which does the same but
This paper considers Bayesian multiple testing under sparsity for polynomial-tailed distributions satisfying a monotone likelihood ratio property. Included in this class of distributions are the Students t, the Pareto, and many other distributions. W
This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing
The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positive