ﻻ يوجد ملخص باللغة العربية
Minimal area surfaces in AdS$_3$ ending on a given curve at the boundary are dual to planar Wilson loops in N=4 SYM. In previous work it was shown that the problem of finding such surfaces can be recast as the one of finding an appropriate parameterization of the boundary contour that corresponds to conformal gauge. A. Dekel was able to find such reparameterization in a perturbative expansion around a circular contour. In this work we show that for more general contours such reparameterization can be found using a numerical procedure that does not rely on a perturbative expansion. This provides further checks and applications of the integrability method. An interesting property of the method is that it uses as data the Schwarzian derivative of the contour and therefore it has manifest global conformal invariance. Finally, we apply Shanks transformation to extend the near circular expansion to larger deformations, the results are in agreement with the new method.
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma
We describe the asymptotic behavior of minimal area submanifolds in product spacetimes of an asymptotically hyperbolic space times a compact internal manifold. In particular, we find that unlike the case of a minimal area submanifold just in an asymp
We write down the Algebraic Bethe Ansatz for string theory on $mbox{AdS}_3timesmbox{S}^3timesmbox{T}^4$ and $mbox{AdS}_3timesmbox{S}^3timesmbox{K3}$ in its orbifold limits. We use it to determine the wave-functions of protected closed strings in thes
We present new classes of explicit supersymmetric AdS_3 solutions of type IIB supergravity with non-vanishing five-form flux and AdS_2 solutions of D=11 supergravity with electric four-form flux. The former are dual to two-dimensional SCFTs with (0,2
We study extremal curves associated with a functional which is linear in the curves torsion. The functional in question is known to capture the properties of entanglement entropy for two-dimensional conformal field theories with chiral anomalies and