ﻻ يوجد ملخص باللغة العربية
The validity of SU(4)-flavor symmetry relations of couplings of charmed $D$ mesons to light mesons and baryons is examined with the use of $^3{rm P}_0$ quark-pair creation model and nonrelativistic quark model wave functions. We focus on the three-meson couplings $pipirho$, $KKrho$ and $DDrho$ and baryon-baryon-meson couplings $NNpi$, $NLambda K$ and $NLambda_c D$. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the $DDrho$ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed.
We review heavy quark flavor and spin symmetries, their exploitation in heavy meson effective theories and the flavored couplings of charmed and light mesons in the definition of their effective Lagrangians. We point out how nonperturbative continuum
We examine flavor SU(3) breaking effects on meson-baryon scattering amplitudes in the chiral unitary model. It turns out that the SU(3) breaking, which appears in the leading quark mass term in the chiral expansion, can not explain the channel depend
Flavor SU(3) symmetry, including $30%$ first order SU(3) breaking, has been shown to describe adequately a vast amount of data for charmed meson decays to two pseudoscalar mesons and to a vector and a pseudoscalar meson. We review a recent dramatic p
We study s-wave meson-baryon scattering using the chiral unitary model. We consider $1/2^{-}$ baryon resonances as quasibound states of the low lying mesons ($pi,K,eta$) and baryons ($N,Lambda,Sigma,Xi$). In previous works, the subtraction constants
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, w