ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon pair generation in a lossy microring resonator. I. Theory

152   0   0.0 ( 0 )
 نشر من قبل Paul M. Alsing
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate entangled photon pair generation in a lossy microring resonator using an input-output formalism based on the work of Raymer and McKinstrie (Phys. Rev. A 88, 043819 (2013)) and Alsing, et al. (Phys. Rev. A 95, 053828 (2017)) that incorporates circulation factors that account for the multiple round trips of the fields within the cavity. We consider the nonlinear processes of spontaneous parametric down conversion and spontaneous four wave mixing, and we compute the generated biphoton signal-idler state from a single bus microring resonator, along with the generation, coincidence-to-accidental, and heralding efficiency rates. We compare these generalized results to those obtained by previous works employing the standard Langevin input-output formalism.

قيم البحث

اقرأ أيضاً

In this work we examine the entanglement of the output signal-idler squeezed vacuum state in the Heisenberg picture as a function of the coupling and internal propagation loss parameters of a microring resonator. Using the log-negativity as a measure of entanglement for a mixed Gaussian state, we examine the competitive effects of the transfer matrix that encodes the classical phenomenological loss, as well as the matrix that that incorporates the coupling and internal propagation loss due to the quantum Langevin noise fields required to preserve unitarity of the composite system,(signal-idler) and environment (noise) structure.
120 - Z. Vernon , J.E. Sipe 2015
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
Counter-propagating parametric conversion processes in non-linear bulk crystals have been shown to feature unique properties for efficient narrowband frequency conversion. In quantum optics, the generation of photon pairs with a counter-propagating p arametric down-conversion process (PDC) in a waveguide, where signal and idler photons propagate in opposite directions, offers unique material-independent engineering capabilities. However, realizing counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely short poling periods. Here, we report on the generation of counter-propagating single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength. The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior. Furthermore, they allow the direct observation of the temporal envelope of heralded single photons with state-of-the art photon counters.
We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entang led) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable tech niques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا