ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformations of coisotropic submanifolds in Jacobi manifolds

380   0   0.0 ( 0 )
 نشر من قبل Alfonso Giuseppe Tortorella
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this thesis, we study the deformation problem of coisotropic submanifolds in Jacobi manifolds. In particular we attach two algebraic invariants to any coisotropic submanifold $S$ in a Jacobi manifold, namely the $L_infty[1]$-algebra and the BFV-complex of $S$. Our construction generalizes and unifies analogous constructions in symplectic, Poisson, and locally conformal symplectic geometry. As a new special case we also attach an $L_infty[1]$-algebra and a BFV-complex to any coisotropic submanifold in a contact manifold. The $L_infty[1]$-algebra of $S$ controls the formal coisotropic deformation problem of $S$, even under Hamiltonian equivalence. The BFV-complex of $S$ controls the non-formal coisotropic deformation problem of $S$, even under both Hamiltonian and Jacobi equivalence. In view of these results, we exhibit, in the contact setting, two examples of coisotropic submanifolds whose coisotropic deformation problem is obstructed.



قيم البحث

اقرأ أيضاً

Unlike Legendrian submanifolds, the deformation problem of coisotropic submanifolds can be obstructed. Starting from this observation, we single out in the contact setting the special class of integral coisotropic submanifolds as the direct generaliz ation of Legendrian submanifolds for what concerns deformation and moduli theory. Indeed, being integral coisotropic is proved to be a rigid condition, and moreover the integral coisotropic deformation problem is unobstructed with discrete moduli space.
We describe the deformation cohomology of a symplectic groupoid, and use it to study deformations via Moser path methods, proving a symplectic groupoid version of the Moser Theorem. Our construction uses the deformation cohomologies of Lie groupoids and of multiplicative forms, and we prove that in the symplectic case, deformation cohomology of both the underlying groupoid and of the symplectic groupoid have de Rham models in terms of differential forms. We use the de Rham model, which is intimately connected to the Bott-Shulman-Stasheff double complex, to compute deformation cohomology in several examples. We compute it for proper symplectic groupoids using vanishing results; alternatively, for groupoids satisfying homological 2-connectedness conditions we compute it using a simple spectral sequence. Finally, without making assumptions on the topology, we constructed a map relating differentiable and deformation cohomology of the underlying Lie groupoid of a symplectic groupoid, and related it to its Lie algebroid counterpart via van Est maps.
In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special case s of holomorphic Jacobi manifolds. We show that holomorphic Jacobi structures yield a much richer framework than that of holomorphic Poisson structures. We also discuss the relationship between holomorphic Jacobi structures, generalized contact bundles and Jacobi-Nijenhuis structures.
Adopting the omni-Lie algebroid approach to Dirac-Jacobi structures, we propose and investigate a notion of weak dual pairs in Dirac-Jacobi geometry. Their main motivating examples arise from the theory of multiplicative precontact structures on Lie groupoids. Among other properties of weak dual pairs, we prove two main results. 1) We show that the property of fitting in a weak dual pair defines an equivalence relation for Dirac-Jacobi manifolds. So, in particular, we get the existence of self-dual pairs and this immediately leads to an alternative proof of the normal form theorem around Dirac-Jacobi transversals. 2) We prove the characteristic leaf correspondence theorem for weak dual pairs paralleling and extending analogous results for symplectic and contact dual pairs. Moreover, the same ideas of this proof apply to get a presymplectic leaf correspondence for weak dual pairs in Dirac geometry (not yet present in literature).
231 - Yuxin Dong , Ye-Lin Ou 2015
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pse udo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا