ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the $ u_{mu}$ energy spectrum with IceCube-79

62   0   0.0 ( 0 )
 نشر من قبل Tim Ruhe
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The $ u_mu$ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software truee. The resulting spectrum covers an E$_ u$-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than $1.9,sigma$ in four adjacent bins for neutrino energies $E_ ugeq177.8$,TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.



قيم البحث

اقرأ أيضاً

We present a measurement of the atmospheric $ u_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $ u_e$ originate mainly from the decays of kaons produced in cosmic-ray a ir showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $ u_e$ fluxes to higher energies. The data constrain the conventional $ u_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Hondas calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution ($xi$) to the neutrino flux finds a kaon component that is $xi =1.3^{+0.5}_{-0.4}$ times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is $0.0^{+3.0}_{-0.0}$ times a calculated flux based on the work by Enberg, Reno and Sarcevic.
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to rej ect mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of st able particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $left<sigma_mathrm{A} vright>$, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to $simeq 4 cdot 10^{-24}$ cm$^3$ s$^{-1}$, and $simeq 2.6 cdot 10^{-23}$ cm$^3$ s$^{-1}$ for the $ uoverline{ u}$ channel, respectively.
67 - Joeran Stettner 2019
The IceCube Neutrino Observatory measured a flux of high-energy astrophysical neutrinos in several detection channels. The energy spectrum is fitted as unbroken power-law, but different best-fit parameters were obtained in the various analyses coveri ng different energy ranges between few TeV to 10 PeV. Here, we present an update to the analysis of through-going muon-neutrinos from the Northern Hemisphere. It was extended to almost ten years of data and an improved treatment of systematic uncertainties on the atmospheric fluxes was implemented. The updated best-fit parameters for the astrophysical flux assuming a power-law energy spectrum are $Phi_{astro}=1.44$ and $gamma_{astro}=2.28$. We will present the results of the spectral fit and discuss how the measured flux compares to other IceCube results.
We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا