ترغب بنشر مسار تعليمي؟ اضغط هنا

Leptonic Invariants, Neutrino Mass-Ordering and the Octant of $theta_{23}$

80   0   0.0 ( 0 )
 نشر من قبل M. N. Rebelo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We point out that leptonic weak-basis invariants are an important tool for the study of the properties of lepton flavour models. In particular, we show that appropriately chosen invariants can give a clear indication of whether a particular lepton flavour model favours normal or inverted hierarchy for neutrino masses and what is the octant of $theta_{23}$. These invariants can be evaluated in any conveniently chosen weak-basis and can also be expressed in terms of neutrino masses, charged lepton masses, mixing angles and CP violation phases.



قيم البحث

اقرأ أيضاً

We study the possibility of determining the octant of the neutrino mixing angle $theta_{23}$, that is, whether $theta_{23}> 45^circ$ or $theta_{23}<45^circ$, in long baseline neutrino experiments. Here we numerically derived the sensitivity limits wi thin which these experiments can determine, by measuring the probability of the $ u_{mu}to u_{e}$ transitions, the octant of $theta_{23}$ with a $5sigma$ certainty. The interference of the CP violation angle $delta$ with these limits, as well as the effects of the baseline length and the run-time ratio of neutrino and antineutrino modes of the beam have been analyzed.
Present global fits of world neutrino data hint towards non-maximal $theta_{23}$ with two nearly degenerate solutions, one in the lower octant ($theta_{23} <pi/4$), and the other in the higher octant ($theta_{23} >pi/4$). This octant ambiguity of $th eta_{23}$ is one of the fundamental issues in the neutrino sector, and its resolution is a crucial goal of next-generation long-baseline (LBL) experiments. In this letter, we address for the first time, the impact of a light eV-scale sterile neutrino towards such a measurement, taking the Deep Underground Neutrino Experiment (DUNE) as a case study. In the so-called 3+1 scheme involving three active and one sterile neutrino, the $ u_mu to u_e$ transition probability probed in the LBL experiments acquires a new interference term via active-sterile oscillations. We find that this novel interference term can mimic a swap of the $theta_{23}$ octant, even if one uses the information from both neutrino and antineutrino channels. As a consequence, the sensitivity to the octant of $theta_{23}$ can be completely lost and this may have serious implications in our understanding of neutrinos from both the experimental and theoretical perspectives.
The recent data indicate that the neutrino mixing angle $theta_{23}$ deviates from the maximal-mixing value of 45$^circ$, showing two nearly degenerate solutions, one in the lower octant (LO) ($theta_{23}<45^circ$) and one in the higher octant (HO) ( $theta_{23}>45^circ$). We investigate, using numerical simulations, the prospects for determining the octant of $theta_{23}$ in the future long baseline oscillation experiments. We present our results as contour plots on the ($theta_{23}-45^circ$, $delta$)--plane, where $delta$ is the $CP$ phase, showing the true values of $theta_{23}$ for which the octant can be experimentally determined at 3$,sigma$, 2$,sigma$ and 1$,sigma$ confidence level. In particular, we study the impact of the possible nonunitarity of neutrino mixing on the experimental determination of $theta_{23}$ in those experiments.
Current 3$ u$ global fits predict two degenerate solutions for $theta_{23}$: one lies in lower octant ($theta_{23} <pi/4$), and the other belongs to higher octant ($theta_{23} >pi/4$). Here, we study how the measurement of $theta_{23}$ octant would b e affected in the upcoming Deep Underground Neutrino Experiment (DUNE) if there exist a light eV-scale sterile neutrino. We show that in 3+1 scheme, a new interference term in $ u_mu to u_e$ oscillation probability can spoil the chances of measuring $theta_{23}$ octant completely.
In the Higgs Triplet Model and the neutrinophilic Two-Higgs-Doublet Model the observed neutrinos obtain mass from a vacuum expectation value which is much smaller than the vacuum expectation value of the Higgs boson in the Standard Model. Both models contain a singly charged Higgs boson (H^-) whose Yukawa coupling is directly related to the neutrino mass (i.e. a neutrinophilic charged Higgs). The partial decay widths of H^- into a charged lepton and a neutrino (H^- to l^- nu) depend identically on the neutrino masses and mixings in the two models. We quantify the impact of the recent measurement of sin^2(2theta_{13}), which plays a crucial role in determining the magnitude of the branching ratio of H^- to e^- nu for the case of a normal neutrino mass ordering if the lightest neutrino mass m_0 < 10^{-3} eV. We also discuss the sizeable dependence of H^- to mu^- nu and H^- to tau^- nu on sin^2(theta_{23}), which would enable information to be obtained on sin^2(theta_{23}) and the sign of Delta m^2_{31} if these decays are measured. Such information would help neutrino oscillation experiments to determine the CP-violating phase delta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا