ترغب بنشر مسار تعليمي؟ اضغط هنا

An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems

142   0   0.0 ( 0 )
 نشر من قبل JInglai Li
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method.

قيم البحث

اقرأ أيضاً

We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl ems to produce a series of transport plans which map prior samples to posterior samples. We prove that the sequence of Dirac mixture distributions produced by the SET method converges weakly to the true posterior as the sample size approaches infinity. Furthermore, our numerical results indicate that, when compared to standard Sequential Monte Carlo (SMC) methods, the SET approach is more robust to the choice of Markov mutation kernels and requires less computational efforts to reach a similar accuracy when used to explore complex posterior distributions. Finally, we describe adaptive schemes that allow to completely automate the use of the SET method.
Regularization of ill-posed linear inverse problems via $ell_1$ penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an $ell_1$ penalized functional is via an iterative so ft-thresholding algorithm. We propose an alternative implementation to $ell_1$-constraints, using a gradient method, with projection on $ell_1$-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerat
An approximate diagonalization method is proposed that combines exact diagonalization and perturbation expansion to calculate low energy eigenvalues and eigenfunctions of a Hamiltonian. The method involves deriving an effective Hamiltonian for each e igenvalue to be calculated, using perturbation expansion, and extracting the eigenvalue from the diagonalization of the effective Hamiltonian. The size of the effective Hamiltonian can be significantly smaller than that of the original Hamiltonian, hence the diagonalization can be done much faster. We compare the results of our method with those obtained using exact diagonalization and quantum Monte Carlo calculation for random problem instances with up to 128 qubits.
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an (unknown) fraction of (fixed size) of the available data that is randomly refreshed throughout the algorithm. Inspired by the Approximate Bayesian Computation (ABC) literature, the subsampling process is guided by the fidelity to the observed data, as measured by summary statistics. The resulting algorithm, Informed Sub-Sampling MCMC (ISS-MCMC), is a generic and flexible approach which, contrary to existing scalable methodologies, preserves the simplicity of the Metropolis-Hastings algorithm. Even though exactness is lost, i.e. the chain distribution approximates the posterior, we study and quantify theoretically this bias and show on a diverse set of examples that it yields excellent performances when the computational budget is limited. If available and cheap to compute, we show that setting the summary statistics as the maximum likelihood estimator is supported by theoretical arguments.
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as the limit case of the continuous-time Parallel Tempering algorithm, where the (random) time between swaps of states between two parallel chains goes to zero. Thus, swapping states between chains occurs continuously. In the current work, we extend this idea to the context of time-discrete Markov chains and present two Markov chain Monte Carlo algorithms that follow the same paradigm as the continuous-time infinite swapping procedure. We analyze the convergence properties of such discrete-time algorithms in terms of their spectral gap, and implement them to sample from different target distributions. Numerical results show that the proposed methods significantly improve over more traditional sampling algorithms such as Random Walk Metropolis and (traditional) Parallel Tempering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا