ترغب بنشر مسار تعليمي؟ اضغط هنا

One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au(111) by molecular-beam epitaxy

73   0   0.0 ( 0 )
 نشر من قبل Maohai Xie Prof.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single layer (SL) phosphorus (phosphorene) has drawn considerable research attention recently as a two-dimensional (2D) material for application promises. It is a semiconductor showing superior transport and optical properties. Few-layer or SL black phosphorus has been successfully isolated by exfoliation from bulk crystals and extensively studied thereof for its electronic and optical properties. Blue phosphorus (blueP), an allotrope of black phosphorus where atoms are arranged in a more flat atomic configuration, has been recently suggested by theory to exist in the SL form on some substrates. In this work, we report the formation of a blueP-like epilayer on Au(111) by molecular-beam epitaxy. In particular, we uncover by scanning tunneling microscopy (STM) one-dimensional (1D) atomic chains at low coverage, which develop into more compact islands or patches of $(sqrt{3}timessqrt{3})R30^circ$ structure with increasing coverage before blueP-like islands nucleate and grow. We also note an interesting growth characteristic where the $(sqrt{3}timessqrt{3})R30^circ$ surface at intermediate coverage tends to phase-separate into locally low-coverage 1D chain and high-coverage blueP-like structures, respectively. This experiment thus not only lends a support of the recently proposed half-layer by half-layer (HLBHL) growth mechanism but also reveals the kinetic details of blueP growth processes.



قيم البحث

اقرأ أيضاً

311 - J. Dogel , R. Tsekov , W. Freyland 2015
Phase-formation of surface alloying by spinodal decomposition has been studied for the first time at an electrified interface. For this aim Zn was electrodeposited on Au(111) from the ionic liquid AlCl3-MBIC (58:42) containing 1 mM Zn(II) at differen t potentials in the underpotential range corresponding to submonolayer up to monolayer coverage. Structure evolution was observed by in situ electrochemical scanning tunneling microscopy (STM) at different times after starting the deposition via potential jumps and at temperatures of 298 K and 323 K. Spinodal or labyrinth two-dimensional structures predominate at middle coverage, both in deposition and dissolution experiments. They are characterized by a length scale of typically 5 nm which has been determined from the power spectral density of the STM images. Structure formation and surface alloying is governed by slow kinetics with a rate constant k with activation energy of 120 meV and preexponential factor of 0.17 Hz. The evolution of the structural features is described by a continuum model and is found to be in good agreement with the STM observations. From the experimental and model calculation results we conclude that the two-dimensional phase-formation in the Zn on Au(111) system is dominated by surface alloying. The phase separation of a Zn-rich and a Zn-Au alloy phase is governed by 2D spinodal decomposition.
Vertically stacking two dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures in wafer scale with an atomically- sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In-situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly-efficient photodetector arrays were fabricated based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a relatively high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust with a response time of 60 us. Importantly, the device shows no sign of degradation after 1 million cycles of operation. Our study establishes a new approach to produce controllable, robust and large-area 2D heterostructures and presents a crucial step for further practical applications.
We report on the selective-area chemical beam epitaxial growth of InAs in-plane, one-dimensional (1-D) channels using patterned SiO$_{2}$-coated InP(001), InP(111)B, and InP(110) substrates to establish a scalable platform for topological superconduc tor networks. Top-view scanning electron micrographs show excellent surface selectivity and dependence of major facet planes on the substrate orientations and ridge directions, and the ratios of the surface energies of the major facet planes were estimated. Detailed structural properties and defects in the InAs nanowires (NWs) were characterized by transmission electron microscopic analysis of cross-sections perpendicular to the NW ridge direction and along the NW ridge direction. Electrical transport properties of the InAs NWs were investigated using Hall bars, a field effect mobility device, a quantum dot, and an Aharonov-Bohm loop device, which reflect the strong spin-orbit interaction and phase-coherent transport characteristic in the selectively grown InAs systems. This study demonstrates that selective-area chemical beam epitaxy is a scalable approach to realize semiconductor 1-D channel networks with the excellent surface selectivity and this material system is suitable for quantum transport studies.
Gray tin, also known as {alpha}-Sn, has been attracting research interest recent years due to its topological nontrivial properties predicted theoretically. The Dirac linear band dispersion has been proved experimentally by angle resolved photoemissi on spectroscopy. We have grown a series of {alpha}-Sn thin film samples in two types with different substrates and thicknesses by molecular beam epitaxy. To explore the possible exotic physical properties related to the topological band structures, we have measured the electrical transport properties of our {alpha}-Sn thin film samples and observed multiple superconducting transitions. We have identified the transitions above 4.5 K, besides the transition maybe related to the b{eta} phase around 3.7 K. The changes of the superconducting properties over time reflect the aging effects in our samples. We have also confirmed the strain effects on the superconducting transitions through altering the relative thickness of our samples.
Black phosphorus (BP), a layered van der Waals material, reportedly has a band gap sensitive to external perturbations and manifests a Dirac-semimetal phase when its band gap is closed. Previous studies were focused on effects of each perturbation, l acking a unified picture for the band-gap closing and the Dirac-semimetal phase. Here, using pseudospins from the glide-reflection symmetry, we study the electronic structures of mono- and bilayer BP and construct the phase diagram of the Dirac-semimetal phase in the parameter space related to pressure, strain, and electric field. We find that the Dirac-semimetal phase in BP layers is singly connected in the phase diagram, indicating the phase is topologically identical regardless of the gap-closing mechanism. Our findings can be generalized to the Dirac semimetal phase in anisotropic layered materials and can play a guiding role in search for a new class of topological materials and devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا