ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

117   0   0.0 ( 0 )
 نشر من قبل Russell Deitrick
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we review how environmental context can be used to interpret whether O2 is a biosignature in extrasolar planetary observations. This paper builds on the overview of current biosignature research discussed in Schwieterman et al. (2017), and provides an in-depth, interdisciplinary example of biosignature identification and observation that serves as a basis for the development of the general framework for biosignature assessment described in Catling et al., (2017). O2 is a potentially strong biosignature that was originally thought to be an unambiguous indicator for life at high-abundance. We describe the coevolution of life with the early Earths environment, and how the interplay of sources and sinks in the planetary environment may have resulted in suppression of O2 release into the atmosphere for several billion years, a false negative for biologically generated O2. False positives may also be possible, with recent research showing potential mechanisms in exoplanet environments that may generate relatively high abundances of atmospheric O2 without a biosphere being present. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. Similarly our ability to interpret O2 observed in an exoplanetary atmosphere is also crucially dependent on environmental context to rule out false positive mechanisms. We describe future photometric, spectroscopic and time-dependent observations of O2 and the planetary environment that could increase our confidence that any observed O2 is a biosignature, and help discriminate it from potential false positives. By observing and understanding O2 in its planetary context we can increase our confidence in the remote detection of life, and provide a model for biosignature development for other proposed biosignatures.



قيم البحث

اقرأ أيضاً

A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O$_2$, only a handful of gases have been considered in detail. Here we evaluate phosphine (PH$_3$). On Earth, PH$_3$ is associated with anaerobic ecosystems, and as such is a potential biosignature gas on anoxic exoplanets. We simulate CO$_2-$ and H$_2-$dominated habitable terrestrial planet atmospheres. We find that PH$_3$ can accumulate to detectable concentrations on planets with surface production fluxes of 10$^{10}$-10$^{14}$ cm$^{-2}$ s$^{-1}$ (corresponding to surface concentrations of 10s of ppb to 100s of ppm), depending on atmospheric composition and UV flux. While high, such surface fluxes are comparable to the global terrestrial production rate of CH$_4$ (10$^{11}$ cm$^{-2}$ s$^{-1}$) and below the maximum local terrestrial PH$_3$ production rate (10$^{14}$ cm$^{-2}$ s$^{-1}$). As with other gases, PH$_3$ can more readily accumulate on low-UV planets, e.g. planets orbiting quiet M-dwarfs or with a photochemical UV shield. If detected, PH$_3$ is a promising biosignature gas, as it has no known abiotic false positives on terrestrial planets that could generate the high fluxes required for detection. PH$_3$ also has 3 strong spectral features such that in any atmosphere scenario 1 of the 3 will be unique compared to other dominant spectroscopic molecules. PH$_3$s weakness as a biosignature gas is its high reactivity, requiring high outgassing for detectability. We calculate that 10s of hours of JWST time are required for a potential detection of PH$_3$. Yet because PH$_3$ is spectrally active in the same wavelength regions as other atmospherically important molecules (e.g., H$_2$O and CH$_4$), searches for PH$_3$ can be carried out at no additional observational cost to searches for other molecules relevant to exoplanet habitability.
Ammonia (NH3) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant known abiotic NH3 source. The conditions required for NH3 to accumulate in the atmosphere are, however, s tringent. NH3s high water solubility and high bio-useability likely prevent NH3 from accumulating in the atmosphere to detectable levels unless life is a net source of NH3 and produces enough NH3 to saturate the surface sinks. Only then can NH3 accumulate in the atmosphere with a reasonable surface production flux. For the highly favorable planetary scenario of terrestrial planets with H2-dominated atmospheres orbiting M dwarf stars (M5V), we find a minimum of about 5 ppm column-averaged mixing ratio is needed for NH3 to be detectable with JWST, considering a 10 ppm JWST systematic noise floor. When the surface is saturated with NH3 (i.e., there are no NH3-removal reactions on the surface), the required biological surface flux to reach 5 ppm is on the order of 10^10 molecules cm-2 s-1, comparable to the terrestrial biological production of CH4. However, when the surface is unsaturated with NH3, due to additional sinks present on the surface, life would have to produce NH3 at surface flux levels on the order of 10^15 molecules cm-2 s-1 (approx. 4.5x10^6 Tg year-1). This value is roughly 20,000 times greater than the biological production of NH3 on Earth and about 10,000 times greater than Earths CH4 biological production. Volatile amines have similar solubilities and reactivities to NH3 and hence share NH3s weaknesses and strengths as a biosignature. Finally, to establish NH3 as a biosignature gas, we must rule out mini-Neptunes with deep atmospheres, where temperatures and pressures are high enough for NH3s atmospheric production.
Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future directions in life detection, which permits the possibility of generalizing our search strategy beyond biosignatures of known life. The Bayesian methodology provides a language to define quantitatively the conditional probabilities and confidence levels of future life detection and, importantly, may constrain the prior probability of life with or without positive detection. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from stellar and planetary context, the contingencies of evolutionary history and the universalities of physics and chemistry. We discuss how the Bayesian framework can guide our search strategies, including determining observational wavelengths or deciding between targeted searches or larger, lower resolution surveys. Our goal is to provide a quantitative framework not entrained to specific definitions of life or its signatures, which integrates the diverse disciplinary perspectives necessary to confidently detect alien life.
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found wit h future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical Exo-Earth System models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes false positives where abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. 1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including external exoplanet parameters (e.g., mass and radius) to determine an exoplanets suitability for life. 2) Characterization of internal exoplanet parameters (e.g., climate) to evaluate habitability. 3) Assessment of potential biosignatures within the environmental context (components 1-2) and any corroborating evidence. 4) Exclusion of false positives. The resulting posterior Bayesian probabilities of lifes existence map to five confidence levels, ranging from very likely (90-100%) to very unlikely ($le$10%) inhabited.
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseo us products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earths biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a state-of-the-art overview of our current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well-known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required for a given atmospheric signature. We focus particularly on advances made since the seminal review by Des Marais et al. (2002). The purpose of this work is not to propose new biosignatures strategies, a goal left to companion papers in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا