ﻻ يوجد ملخص باللغة العربية
The ability to manipulate the frequency of light is of great importance in both fundamental quantum sciences and practical applications. Traditional method for frequency conversion relies on nonlinear optical processes, which are faced with the obstacles of low efficiency and limited bandwidth. Recent developments of topological photonics introduce the concepts of gauge potentials and magnetic fields to the realm of photons. Here, we demonstrate versatile frequency manipulation of light via photonic gauge potentials in a fiber-optic communication system. The gauge potential of frequency dimension is realized by controlling the initial phase of electro-optic phase modulation. A maximum 50 GHz frequency shift and three-fold bandwidth expansion for frequency combs are achieved by choosing different gauge potentials. By adopting two cascaded phase modulators with different gauge potentials, we also realize negative refraction for frequency combs and frequency perfect imagingfor arbitrarily input spectra. These results may pave the way towards versatile frequency management in quantum optics and classical optical communications.
We propose an efficient method for spatial filtering of light beams by propagating them through 2D (also 3D) longitudinally chirped photonic crystals, i.e. through the photonic structures with fixed transverse lattice period and with the longitudinal
The use of artificial gauge fields enables systems of uncharged particles to behave as if affected by external fields. Generated by geometry or external modulation, artificial gauge fields have been instrumental in demonstrating topological phenomena
We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number o
Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fiel
We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of