ﻻ يوجد ملخص باللغة العربية
A no-hair theorem for spherical black holes in scalar-tensor gravity is presented. Contrary to the existing theorems, which are proved in the Einstein conformal frame, this proof is performed entirely in the Jordan frame. The theorem is limited to spherical symmetry (instead of axisymmetry) but holds for non-constant Brans-Dicke couplings.
In the context of complex scalar field coupled to Einstein gravity theory, we present a novel family of solutions of Kerr black holes with excited-state scalar hair inspired by the work of Herdeiro and Radu in [Phys. Rev. Lett. {bf 112}, 221101 (2014
Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekensteins method. It is shown the solut
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the sca
We study standard Einstein-Maxwell theory minimally coupled to a complex valued and self-interacting scalar field. We demonstrate that new, previously unnoticed spherically symmetric, charged black hole solutions with scalar hair exist in this model
Scalar fields around compact objects are of interest for scalar-tensor theories of gravity and dark matter models consisting of a massive scalar, e.g. axions. We study the behaviour of a scalar field around a Kerr black hole with non trivial asymptot