ﻻ يوجد ملخص باللغة العربية
Based on a sample of over 1,800 radio AGN at redshifts out to z~5, which have typical stellar masses within ~3x(10^{10}-10^{11}) Msol, and 3 GHz radio data in the COSMOS field, we derived the 1.4 GHz radio luminosity functions for radio AGN (L_1.4GHz ~ 10^{22}-10^{27} W/Hz) out to z~5. We constrained the evolution of this population via continuous models of pure density and pure luminosity evolutions, and we found best-fit parametrizations of Phi*~(1+z)^{(2.00+/-0.18)-(0.60+/-0.14)z}, and L*~(1+z)^{(2.88+/-0.82)-(0.84+/-0.34)z}, respectively, with a turnover in number and luminosity densities of the population at z~1.5. We converted 1.4 GHz luminosity to kinetic luminosity taking uncertainties of the scaling relation used into account. We thereby derived the cosmic evolution of the kinetic luminosity density provided by the AGN and compared this luminosity density to the radio-mode AGN feedback assumed in the Semi-Analytic Galaxy Evolution (SAGE) model, i.e., to the redshift evolution of the central supermassive black hole accretion luminosity taken in the model as the source of heating that offsets the energy losses of the cooling, hot halo gas, and thereby limits further stellar mass growth of massive galaxies. We find that the kinetic luminosity exerted by our radio AGN may be high enough to balance the radiative cooling of the hot gas at each cosmic epoch since z~5. However, although our findings support the idea of radio-mode AGN feedback as a cosmologically relevant process in massive galaxy formation, many simplifications in both the observational and semi-analytic approaches still remain and need to be resolved before robust conclusions can be reached.
We make use of the deep Karl G. Jansky Very Large Array (VLA) COSMOS radio observations at 3 GHz to infer radio luminosity functions of star-forming galaxies up to redshifts of z~5 based on approximately 6000 detections with reliable optical counterp
(abridged) We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project. The survey covers a 2.6sq.deg. area with a mean rms of ~2.3uJy/b, cataloging 10830 sources (>5sigma). Combining these radio data with o
As the SKA is expected to be operational in the next decade, investigations of the radio sky in the range of 100 MHz to 10 GHz have become important for simulations of the SKA observations. In determining physical properties of galaxies from radio da
We explore the multiwavelength properties of AGN host galaxies for different classes of radio-selected AGN out to z$lesssim$6 via a multiwavelength analysis of about 7700 radio sources in the COSMOS field. The sources were selected with the Very Larg
We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z~4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared-radio co