ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits of Yang-Mills {alpha}-connections

134   0   0.0 ( 0 )
 نشر من قبل Casey Kelleher
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the spirit of recent work of Lamm, Malchiodi and Micallef in the setting of harmonic maps, we identify Yang-Mills connections obtained by approximations with respect to the Yang-Mills {alpha}-energy. More specifically, we show that for the SU(2) Hopf fibration over the four sphere, for sufficiently small {alpha} values the SO(4) invariant ADHM instanton is the unique {alpha}-critical point which has Yang-Mills {alpha}-energy lower than a specific threshold.



قيم البحث

اقرأ أيضاً

On a Riemannian manifold of dimension $n$ we extend the known analytic results on Yang-Mills connections to the class of connections called $Omega$-Yang-Mills connections, where $Omega$ is a smooth, not necessarily closed, $(n-4)$-form. Special cases include $Omega$-anti-self-dual connections and Hermitian-Yang-Mills connections over general complex manifolds. By a key observation, a weak compactness result is obtained for moduli space of smooth $Omega$-Yang-Mills connections with uniformly $L^2$ bounded curvature, and it can be improved in the case of Hermitian-Yang-Mills connections over general complex manifolds. A removable singularity theorem for singular $Omega$-Yang-Mills connections on a trivial bundle with small energy concentration is also proven. As an application, it is shown how to compactify the moduli space of smooth Hermitian-Yang-Mills connections on unitary bundles over a class of balanced manifolds of Hodge-Riemann type. This class includes the metrics coming from multipolarizations, and in particular, the Kaehler metrics. In the case of multipolarizations on a projective algebraic manifold, the compactification of smooth irreducible Hermitian-Yang-Mills connections with fixed determinant modulo gauge transformations inherits a complex structure from algebro-geometric considerations.
We investigate stability of pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions. We show that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for these classes. Assuming th e graded object of a Jordan-Holder filtration to be locally free, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will be stable, in terms of intersection numbers on the base of the fibration. The arguments rely on adiabatic constructions of hermitian Yang-Mills connections together with the classical Donaldson-Uhlenbeck-Yau correspondence.
We prove a conformally invariant estimate for the index of Schrodinger operators acting on vector bundles over four-manifolds, related to the classical Cwikel-Lieb-Rozenblum estimate. Applied to Yang-Mills connections we obtain a bound for the index in terms of its energy which is conformally invariant, and captures the sharp growth rate. Furthermore we derive an index estimate for Einstein metrics in terms of the topology and the Einstein-Hilbert energy. Lastly we derive conformally invariant estimates for the Betti numbers of an oriented four-manifold with positive scalar curvature.
222 - Casey Lynn Kelleher 2015
We define a family of functionals generalizing the Yang-Mills functional. We study the corresponding gradient flows and prove long-time existence and convergence results for subcritical dimensions as well as a bubbling criterion for the critical dime nsions. Consequently, we have an alternate proof of the convergence of Yang-Mills flow in dimensions 2 and 3 given by Rade and the bubbling criterion in dimension 4 of Struwe in the case where the initial flow data is smooth.
We study singularity structure of Yang-Mills flow in dimensions $n geq 4$. First we obtain a description of the singular set in terms of concentration for a localized entropy quantity, which leads to an estimate of its Hausdorff dimension. We develop a theory of tangent measures for the flow, which leads to a stratification of the singular set. By a refined blowup analysis we obtain Yang-Mills connections or solitons as blowup limits at any point in the singular set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا