ترغب بنشر مسار تعليمي؟ اضغط هنا

Mn-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered Sr3(Ru1-xMnx)2O7

67   0   0.0 ( 0 )
 نشر من قبل Qiang Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bilayered Sr3Ru2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr3(Ru1-xMnx)2O7. Using elastic neutron scattering we determined the effect of Mn doping on the magnetic structure and in-plane magnetic correlation lengths in Sr3(Ru1-xMnx)2O7 (x = 0.06 and 0.12). With increasing Mn doping (x) from 0.06 to 0.12 or decreasing temperatures for x=0.12, an evolution from an in-plane short-range to long-range double-stripe AFM ground state occurs. For both compounds, the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise of the electrical resistivity and the specific heat. Since it does not induce measurable lattice distortion, the double-stripe magnetic order with anisotropic spin texture breaks the symmetry from C4v crystal lattice to C2v magnetic sublattice. These observations shed new light on an age-old question of Slater versus Mott-type MIT.

قيم البحث

اقرأ أيضاً

Layered ruthenates are prototype materials with strong structure-property correlations. We report the structural and physical properties of double-layered perovskite Sr3(Ru1-xMnx)2O7 single crystals with 0<=x<=0.7. Single crystal x-ray diffraction re finements reveal that Mn doping on the Ru site leads to the shrinkage of unit-cell volume and disappearance of (Ru/Mn)O6 octahedron rotation when x>0.16, while the crystal structure remains tetragonal. Correspondingly, the electric and magnetic properties change with x. The electrical resistivity reveals metallic character (d rho/d T>0) at high temperatures but insulating behavior (d rho/d T<0) below a characteristic temperature T_MIT. Interestingly, T_MIT is different from T_M, at which magnetic susceptibility reaches maximum. T_MIT monotonically increases with increasing x while T_M shows non-monotonic dependence with x. The difference between T_MIT and T_M (T_MIT>T_M) becomes larger when x>0.16. The constructed phase diagram consists of five distinct regions, demonstrating that the physical properties of such a system can easily be tuned by chemical doping.
Double-layered Sr3Ru2O7 has received phenomenal consideration because it exhibits a plethora of exotic phases when perturbed. New phases emerge with the application of pressure, magnetic field, or doping. Here we show that creating a surface is an al ternative and effective way to reveal hidden phases that are different from those seen in the bulk by investigating the surface properties of Sr3(Ru1-xMnx)2O7. Driven by the tilt distortion of RuO6 octahedra, the surface of Sr3Ru2O7 is less metallic than the bulk. In contrast, because of the vanishing of tilt and enhanced rotation with Mn-doping, the surface of Sr3(Ru0.84Mn0.16)2O7 is metallic while the bulk is insulating. Our result demonstrates that the electronic and structural properties at the surface are intimately coupled and consistent with quasi two-dimensional character.
We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr3(Ru1-xMnx)2O7, performed at both Ru and Mn L-edges. Resonant magnetic superstructure reflections, which indicate an incipie nt instability of the parent compound, are detected below the transition. Based on modelling of the REXS intensity from randomly distributed Mn impurities, we establish the inhomogeneous nature of the metal-insulator transition, with an effective percolation threshold corresponding to an anomalously low x<0.05 Mn substitution.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
We discuss Mott insulating and metallic phases of a model with $e_g$ orbital degeneracy to understand physics of Mn perovskite compounds. Quantum Monte Carlo and Lanczos diagonalization results are discussed in this model. To reproduce experimental r esults on charge gap and Jahn-Teller distortions, we show that a synergy between the strong correlation effects and the Jahn-Teller coupling is important. The incoherent charge dynamics and strong charge fluctuations are characteristic of the metallic phase accompanied with critical enhancement of short-ranged orbital correlation near the insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا