ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton-Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates

64   0   0.0 ( 0 )
 نشر من قبل Roel Tempelaar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole-dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wavefunctions causes a destructive interference in the annihilation probability. For J-aggregates, where this sign is negative, the interference is constructive instead, as a result of which no such coherent suppression of the annihilation rate occurs. As a consequence, room temperature annihilation rates of typical H- and J-aggregates differ by a factor of ~3, while an order of magnitude difference is found for low-temperature aggregates with a low degree of disorder. These findings, which explain experimental observations, reveal a fundamental principle underlying exciton-exciton annihilation, with major implications for technological devices and experimental studies involving high excitation densities.



قيم البحث

اقرأ أيضاً

We show that the third-order optical response of disordered linear J-aggregates can be calculated by considering only a limited number of transitions between (multi-) exciton states. We calculate the pump-probe absorption spectrum resulting from the truncated set of transitions and show that, apart from the blue wing of the induced absorption peak, it agrees well with the exact spectrum.
Frenkel excitons, the primary photoexcitations in organic semiconductors that are unequivocally responsible for the optical properties of this materials class, are predicted to form emph{bound} exciton pairs, i.e., biexcitons. These are key intermedi ates, ubiquitous in many relevant photophysical processes; for example, they determine the exciton bimolecular annihilation dynamics in such systems. Deciphering the details of biexciton correlations is, thus, of utmost importance to understand the optical processes in these semiconductors. To date, however, due to their spectral ambiguity, there has been only scant direct evidence of bound biexcitons, limiting the insights that can be gained. Moreover, a quantum-mechanical basis describing biexciton correlation/stability has so far been lacking. By employing nonlinear coherent spectroscopy, we identify here bound biexcitons in a model polymeric semiconductor. We find, unexpectedly, that excitons with emph{interchain} vibronic dispersion reveal emph{intrachain} biexciton correlations and vice versa. Moreover, using a Frenkel exciton model, we can relate the biexciton binding energy to molecular parameters quantified by quantum chemistry, including the magnitude and sign of the exciton-exciton interaction the inter-site hopping energies. Therefore, our work promises a window towards general insights into the many-body electronic structure in polymeric semiconductors and beyond; e.g., other excitonic systems such as organic semiconductor crystals, molecular aggregates, photosynthetic light-harvesting complexes, or DNA.
Organic semiconductors exhibit properties of individual molecules and extended crystals simultaneously. The strongly bound excitons they host are typically described in the molecular limit, but excitons can delocalize over many molecules, raising the question of how important the extended crystalline nature is. Using accurate Greens function based methods for the electronic structure and non-perturbative finite difference methods for exciton-vibration coupling, we describe exciton interactions with molecular and crystal degrees of freedom concurrently. We find that the degree of exciton delocalization controls these interactions, with thermally activated crystal phonons predominantly coupling to delocalized states, and molecular quantum fluctuations predominantly coupling to localized states. Based on this picture, we quantitatively predict and interpret the temperature and pressure dependence of excitonic peaks in the acene series of organic semiconductors, which we confirm experimentally, and we develop a simple experimental protocol for probing exciton delocalization. Overall, we provide a unified picture of exciton delocalization and vibrational effects in organic semiconductors, reconciling the complementary views of finite molecular clusters and periodic molecular solids.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.
Strong many-body interactions in two-dimensional (2D) semiconductors give rise to efficient exciton-exciton annihilation (EEA). This process is expected to result in the generation of unbound high energy carriers. Here, we report an unconventional ph otoresponse of van der Waals heterostructure devices resulting from efficient EEA. Our heterostructures, which consist of monolayer transition metal dichalcogenide (TMD), hexagonal boron nitride (hBN), and few-layer graphene, exhibit photocurrent when photoexcited carriers possess sufficient energy to overcome the high energy barrier of hBN. Interestingly, we find that the device exhibits moderate photocurrent quantum efficiency even when the semiconducting TMD layer is excited at its ground exciton resonance despite the high exciton binding energy and large transport barrier. Using ab initio calculations, we show that EEA yields highly energetic electrons and holes with unevenly distributed energies depending on the scattering condition. Our findings highlight the dominant role of EEA in determining the photoresponse of 2D semiconductor optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا