ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Formation with BECDM: I. Turbulence and relaxation of idealised haloes

63   0   0.0 ( 0 )
 نشر من قبل Philip Mocz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philip Mocz




اسأل ChatGPT حول البحث

We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDMs small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrodinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic $r^{-3}$ NFW-like profile. We find a fundamental relation of the core=to-halo mass with the dimensionless invariant $Xi equiv lvert E rvert/M^3/(Gm/hbar)^2$ or $M_{rm c}/M simeq 2.6 Xi^{1/3}$, linking the soliton to global halo properties. For $r geq 3.5 ,r_{rm c}$ core radii, we find equipartition between potential, classical kinetic, and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behavior driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a $k^{-1.1}$ power-law. This suggests the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a $k^{-5/3}$ Kolmogorov power-law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying the soliton-sized granules carry most of the turbulent energy in BECDM haloes.

قيم البحث

اقرأ أيضاً

Bose-Einstein Condensate Dark Matter (BECDM; also known as Fuzzy Dark Matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established Cold Dark Matter (CDM) model. We perform cos mological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts ($z gtrsim 5$) for a boson mass $m=2.5cdot 10^{-22}~{rm eV}$, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential is ignored and only the initial suppression of the power spectrum is considered -- a Warm Dark Matter-like (WDM) model often used as a proxy for BECDM. Our simulations confirm that WDM is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/WDM compared to the CDM case: in BECDM/WDM first stars form at $zsim 13$/$13.5$ while in CDM star formation starts at $zsim 35$. The signature of BECDM interference, not present in WDM, is seen in the evolved dark matter power spectrum: although the small scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM.
122 - Marco Velliscig 2014
We use cosmological hydrodynamical simulations to investigate how the inclusion of physical processes relevant to galaxy formation (star formation, metal-line cooling, stellar winds, supernovae and feedback from Active Galactic Nuclei, AGN) change th e properties of haloes, over four orders of magnitude in mass. We find that gas expulsion and the associated dark matter (DM) expansion induced by supernova-driven winds are important for haloes with masses M200 < 10^13 Msun, lowering their masses by up to 20% relative to a DM-only model. AGN feedback, which is required to prevent overcooling, has a significant impact on halo masses all the way up to cluster scales (M200 ~ 10^15 Msun). Baryonic physics changes the total mass profiles of haloes out to several times the virial radius, a modification that cannot be captured by a change in the halo concentration. The decrease in the total halo mass causes a decrease in the halo mass function of about 20%. This effect can have important consequences for abundance matching technique as well as for most semi-analytic models of galaxy formation. We provide analytic fitting formulae, derived from simulations that reproduce the observed baryon fractions, to correct halo masses and mass functions from DM-only simulations. The effect of baryonic physics (AGN feedback in particular) on cluster number counts is about as large as changing the cosmology from WMAP7 to Planck, even when a moderately high mass limit of M500 ~ 10^14 Msun is adopted. Thus, for precision cosmology the effects of baryons must be accounted for.
We study the properties of gas inside and around galaxy haloes as a function of radius and halo mass, focussing mostly on z=2, but also showing some results for z=0. For this purpose, we use a suite of large cosmological, hydrodynamical simulations f rom the OverWhelmingly Large Simulations project. The properties of cold- and hot-mode gas, which we separate depending on whether the temperature has been higher than 10^5.5 K while it was extragalactic, are clearly distinguishable in the outer parts of massive haloes (virial temperatures >> 10^5 K. The differences between cold- and hot-mode gas resemble those between inflowing and outflowing gas. The cold-mode gas is mostly confined to clumpy filaments that are approximately in pressure equilibrium with the diffuse, hot-mode gas. Besides being colder and denser, cold-mode gas typically has a much lower metallicity and is much more likely to be infalling. However, the spread in the properties of the gas is large, even for a given mode and a fixed radius and halo mass, which makes it impossible to make strong statements about individual gas clouds. Metal-line cooling causes a strong cooling flow near the central galaxy, which makes it hard to distinguish gas accreted through the cold and hot modes in the inner halo. Stronger feedback results in larger outflow velocities and pushes hot-mode gas to larger radii. The gas properties evolve as expected from virial arguments, which can also account for the dependence of many gas properties on halo mass. We argue that cold streams penetrating hot haloes are observable as high-column density HI Lyman-alpha absorption systems in sightlines near massive foreground galaxies.
276 - Aaron D. Ludlow 2018
We study the impact of numerical parameters on the properties of cold dark matter haloes formed in collisionless cosmological simulations. We quantify convergence in the median spherically-averaged circular velocity profiles for haloes of widely vary ing particle number, as well as in the statistics of their structural scaling relations and mass functions. In agreement with prior work focused on single haloes, our results suggest that cosmological simulations yield robust halo properties for a wide range of gravitational softening parameters, $epsilon$, provided: 1) $epsilon$ is not larger than a convergence radius, $r_{rm conv}$, which is dictated by 2-body relaxation and determined by particle number, and 2) a sufficient number of timesteps are taken to accurately resolve particle orbits with short dynamical times. Provided these conditions are met, median circular velocity profiles converge to within $approx 10$ per cent for radii beyond which the local 2-body relaxation timescale exceeds the Hubble time by a factor $kappaequiv t_{rm relax}/t_{rm H}gt 0.177$, with better convergence attained for higher $kappa$. We provide analytic estimates of $r_{rm conv}$ that build on previous attempts in two ways: first, by highlighting its explicit (but weak) softening-dependence and, second, by providing a simpler criterion in which $r_{rm conv}$ is determined entirely by the mean inter-particle spacing, $l$; for example, better than $10$ per cent convergence in circular velocity for $rgt 0.05,l$. We show how these analytic criteria can be used to assess convergence in structural scaling relations for dark matter haloes as a function of their mass or maximum circular speed.
Hierarchical models of structure formation predict that dark matter halo assembly histories are characterised by episodic mergers and interactions with other haloes. An accurate description of this process will provide insights into the dynamical evo lution of haloes and the galaxies that reside in them. Using large cosmological N-body simulations, we characterise halo orbits to study the interactions between substructure haloes and their hosts, and how different evolutionary histories map to different classes of orbits. We use two new software tools - WhereWolf, which uses halo group catalogues and merger trees to ensure that haloes are tracked accurately in dense environments, and OrbWeaver, which quantifies each halos orbital parameters. We demonstrate how WhereWolf improves the accuracy of halo merger trees, and we use OrbWeaver to quantify orbits of haloes. We assess how well analytical prescriptions for the merger timescale from the literature compare to measured merger timescales from our simulations and find that existing prescriptions perform well, provided the ratio of substructure-to-host mass is not too small. In the limit of small substructure-to-host mass ratio, we find that the prescriptions can overestimate the merger timescales substantially, such that haloes are predicted to survive well beyond the end of the simulation. This work highlights the need for a revised analytical prescription for the merger timescale that more accurately accounts for processes such as catastrophic tidal disruption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا