ﻻ يوجد ملخص باللغة العربية
Topological phases typically encode topology at the level of the single particle band structure. But a remarkable class of models shows that quantum anomalous Hall effects can be driven exclusively by interactions, while the parent non-interacting band structure is topologically trivial. Unfortunately, these models have so far relied on interactions that do not spatially decay and are therefore unphysical. We study a model of spinless fermions on a decorated honeycomb lattice. Using complementary methods, mean-field theory and exact diagonalization, we find a robust quantum anomalous Hall phase arising from spatially decaying interactions. Our finding paves the way for observing the quantum anomalous Hall effect driven entirely by interactions.
We study the one-band Hubbard model on the honeycomb lattice using a combination of quantum Monte Carlo (QMC) simulations and static as well as dynamical mean-field theory (DMFT). This model is known to show a quantum phase transition between a Dirac
Tight binding models like the Hubbard Hamiltonian are most often explored in the context of uniform intersite hopping $t$. The electron-electron interactions, if sufficiently large compared to this translationally invariant $t$, can give rise to orde
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here,
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it
Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact 4-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure ident