ﻻ يوجد ملخص باللغة العربية
China has encountered serious land loss problems along with urban expansion due to rapid urbanization. Without considering complicated spatiotemporal heterogeneity, previous studies could not extract urban transition rules at large scale well. This study proposed a random forest algorithm (RFA) based cellular automata (CA) model to simulate Chinas urban expansion and farmland loss in a fine scale from 2000 to 2030. The objectives of this study are to 1) mine urban conversion rules in different homogeneous economic development regions, and 2) simulate Chinas urban expansion process and farmland loss at high spatial resolution (30 meters). Firstly, we clustered several homogeneous economic development regions among China according to official statistical data. Secondly, we constructed a RFA-based CA model to mine complex urban conversion rules and carried out simulation of urban expansion and farmland loss at each homo-region. The proposed model was implemented on Tianhe-1 supercomputer located in Guangzhou, China. The accuracy evaluation demonstrates that the simulation result of proposed RFA-based CA model is more in agreement with actual land use change. This study proves that the primary factor of farmland loss in China is rapid urbanization from 2000, and the farmland loss rate is expected to slow down gradually and will stabilize from 2010 to 2030. It shows that China is able to preserve the 1.20 million km farmland without crossing the red line within the next 20 years, but the situation remains severe.
The emergence of complex behaviors in cellular automata is an area that has been widely developed in recent years with the intention to generate and analyze automata that produce space-moving patterns or gliders that interact in a periodic background
Vector-based cellular automata (CA) based on real land-parcel has become an important trend in current urban development simulation studies. Compared with raster-based and parcel-based CA models, vector CA models are difficult to be widely used becau
Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) systems. Past CA model research has focused on improving the technical modeling procedures, and only a few studies have sought to improve our u
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represent