ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Anomalous FCNC tqgamma Couplings at Large Hadron electron Collider

71   0   0.0 ( 0 )
 نشر من قبل Ilkay Turk Cakir
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف I. Turk Cakir




اسأل ChatGPT حول البحث

We investigate the anomalous flavour changing neutral current (FCNC) interactions of top quark through the process $e^{-}pto e^{-}W^{pm}q+X$. We calculate the signal and background cross sections in electron proton collisions at Large Hadron electron Collider (LHeC) with a 7 TeV proton beam from the LHC and a new 60 GeV electron beam from energy recovery linac (ERL). We study the relevant background processes including one electron and three jets in the final state. The distributions of the invariant mass of two jets and an additional jet tagged as $b$-jet are used to account signal and background events after the analysis cuts. We find upper bounds on anomalous FCNC couplings $lambda$ of the order of $10^{-2}$ at LHeC for a luminosity projection of $100$ fb$^{-1}$ together with the fast simulation of detector effects. As a matter of interest, we analyze the sensitivity to the couplings $(lambda_{u},lambda_{c})$ and find an enhanced sensitivity to $lambda_{c}$ at the LHeC when compared to the results from the HERA.



قيم البحث

اقرأ أيضاً

70 - O. Cakir 2018
The top quark flavor changing neutral current (FCNC) processes are extremely suppressed within the Standard Model (SM) of particle physics. However, they could be enhanced in a new physics model Beyond the Standard Model (BSM). The top quark FCNC int eractions would be a good test of new physics at present and future colliders. Within the framework of the BSM models, these interactions can be described by an effective Lagrangian. In this work, we study tqgamma and tqZ effective FCNC interaction vertices through the process e-p->e-Wq+X at future electron proton colliders, projected as Large Hadron electron Collider (LHeC) and Future Circular Collider-hadron electron (FCC-he). The cross sections for the signal have been calculated for different values of parameters lambda_q for tqgamma vertices and kappa_q for $tqZ$ vertices. Taking into account the relevant background we estimate the attainable range of signal parameters as a function of the integrated luminosity and present contour plots of couplings for different significance levels including detector simulation.
207 - Sudhir Kumar Gupta 2009
In this talk, I review the T-odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg --> t t_bar --> (b mu+ nu_mu) (b_bar mu-nu_mu_bar). In addition I will also focus on experimental sensitivities corresponding to the anomalous couplings at the LHC.
For the foreseeable future, the exploration of the high-energy frontier will be the domain of the Large Hadron Collider (LHC). Of particular significance will be its high-luminosity upgrade (HL-LHC), which will operate until the mid-2030s. In this en deavour, for the full exploitation of the HL-LHC physics potential an improved understanding of the parton distribution functions (PDFs) of the proton is critical. The HL-LHC program would be uniquely complemented by the proposed Large Hadron electron Collider (LHeC), a high-energy lepton-proton and lepton-nucleus collider based at CERN. In this work, we build on our recent PDF projections for the HL-LHC to assess the constraining power of the LHeC measurements of inclusive and heavy quark structure functions. We find that the impact of the LHeC would be significant, reducing PDF uncertainties by up to an order of magnitude in comparison to state-of-the-art global fits. In comparison to the HL-LHC projections, the PDF constraints from the LHeC are in general more significant for small and intermediate values of the momentum fraction x. At higher values of x, the impact of the LHeC and HL-LHC data is expected to be of a comparable size, with the HL-LHC constraints being more competitive in some cases, and the LHeC ones in others. Our results illustrate the encouraging complementarity of the HL-LHC and the LHeC in terms of charting the quark and gluon structure of the proton.
At a high energy $ep$ collider, such as the Large Hadron-Electron Collider (LHeC) which is being planned at CERN, one can access the $WWgamma$ vertex exclusively in charged current events with a radiated photon, with no interference from the $WWZ$ ve rtex. We find that the azimuthal angle between the jet and the missing momentum in each charged current event is a sensitive probe of anomalous $WWgamma$ couplings, and show that for quite reasonable values of integrated luminosity, the LHeC can extend the discovery reach for these couplings beyond all present experimental bounds.
We study the impact of dimension-six operators on single- and double-Higgs production rates via gluon fusion at the Large Hadron Collider (LHC). If the top-Yukawa coupling is modified by some new physics whose scale is of the TeV scale, its effect ch anges the cross sections of single-Higgs production $ggto H$ and double-Higgs production $ggto HH$ through the top-loop diagram. In particular, double-Higgs production can receive significant enhancement from the effective top-Yukawa coupling and the new dimension-five coupling $t{bar t}HH$ which are induced by the dimension-six operator. Comparing these results to the forthcoming data at the LHC, one can extract information of the dimension-six operators relevant to the top quark and the Higgs boson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا