ﻻ يوجد ملخص باللغة العربية
We consider the Dirichlet Laplacian $H_gamma$ on a 3D twisted waveguide with random Anderson-type twisting $gamma$. We introduce the integrated density of states $N_gamma$ for the operator $H_gamma$, and investigate the Lifshits tails of $N_gamma$, i.e. the asymptotic behavior of $N_gamma(E)$ as $E downarrow inf {rm supp}, dN_gamma$. In particular, we study the dependence of the Lifshits exponent on the decay rate of the single-site twisting at infinity.
We make a spectral analysis of the massive Dirac operator in a tubular neighborhood of an unbounded planar curve,subject to infinite mass boundary conditions. Under general assumptions on the curvature, we locate the essential spectrum and derive an
We consider Schr{o}dinger operators on $L^{2}({mathbb R}^{d})otimes L^{2}({mathbb R}^{ell})$ of the form $ H_{omega}~=~H_{perp}otimes I_{parallel} + I_{perp} otimes {H_parallel} + V_{omega}$, where $H_{perp}$ and $H_{parallel}$ are Schr{o}dinger oper
We consider Schrodinger operators with a random potential which is the square of an alloy-type potential. We investigate their integrated density of states and prove Lifshits tails. Our interest in this type of models is triggered by an investigation of randomly twisted waveguides.
In this paper we study the influence of an electric field on a two dimen-sional waveguide. We show that bound states that occur under a geometrical deformation of the guide turn into resonances when we apply an electric field of small intensity havin
We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variabl