ﻻ يوجد ملخص باللغة العربية
We investigate electron-correlation effects in the $g$-factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure constant $alpha$, $alpha^2$ and $alpha^3$. The dependence of the NRQED results on the nuclear charge number $Z$ is studied and the individual $1/Z$-expansion contributions are identified. Combining the obtained data with the results of the all-order (in $Zalpha$) calculations performed within the $1/Z$ expansion, we derive the unified theoretical predictions for the $g$-factor of light Li-like ions.
We report an investigation of the self-energy screening effects for the $g$ factor of the ground state of Li-like ions. The leading screening contribution of the relative order $1/Z$ is calculated to all orders in the binding nuclear strength paramet
The nuclear recoil effect on the $g$ factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders i
QED corrections to the $g$ factor of Li-like and B-like ions in a wide range of nuclear charges are presented. Many-electron contributions as well as radiative effects on the one-loop level are calculated. Contributions resulting from the interelectr
We report calculations of QED corrections to the $g$ factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter
Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z = 6-92. The configuration-interaction Dirac-Fock method is employed for the evalu