ترغب بنشر مسار تعليمي؟ اضغط هنا

Decrease of d-wave pairing strength in spite of the persistence of magnetic excitations in the overdoped Hubbard model

322   0   0.0 ( 0 )
 نشر من قبل Edwin Huang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence for the presence of high energy magnetic excitations in overdoped La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) has raised questions regarding the role of spin-fluctuations in the pairing mechanism. If they remain present in overdoped LSCO, why does $T_c$ decrease in this doping regime? Here, using results for the dynamic spin susceptibility ${rm Im}chi(q,omega)$ obtained from a determinantal quantum Monte Carlo (DQMC) calculation for the Hubbard model we address this question. We find that while high energy magnetic excitations persist in the overdoped regime, they lack the momentum to scatter pairs between the anti-nodal regions. It is the decrease in the spectral weight at large momentum transfer, not observed by resonant inelastic X-ray scattering (RIXS), which leads to a reduction in the $d$-wave spin-fluctuation pairing strength.



قيم البحث

اقرأ أيضاً

Angle resolved photoemission spectroscopy (ARPES) studies of the overdoped cuprate superconductor La$_{2-x}$Sr$_x$CuO$_4$ find only small changes in the near nodal electron self energy over a spectral range of several hundred meV as the doping increa ses from x=0.2 to x=0.3 and the superconducting transition temperature T_c decreases from 32K to 0K. These measurements put constraints on the structure of the electron-electron interaction. Here we show that a spin-fluctuation interaction leads to behavior which is consistent with these experimental results.
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$ and $t$ in the form of a checkerboard pattern where $t$ is the hopping within a $2times2$ plaquette and $tp$ is the hopping between the plaquettes. We find inhomogeneity suppresses $T_c$. The characteristic spin excitation energy and the strength of d-wave pairing interaction decrease with decreasing $T_c$ suggesting a strong correlation between these quantities.
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al though a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.
We study the three-band Hubbard model for the copper oxide plane of the high-temperature superconducting cuprates using determinant quantum Monte Carlo and the dynamical cluster approximation (DCA) and provide a comprehensive view of the pairing corr elations in this model using these methods. Specifically, we compute the pair-field susceptibility and study its dependence on temperature, doping, interaction strength, and charge-transfer energy. Using the DCA, we also solve the Bethe-Salpeter equation for the two-particle Greens function in the particle-particle channel to determine the transition temperature to the superconducting phase on smaller clusters. Our calculations reproduce many aspects of the cuprate phase diagram and indicate that there is an optimal value of the charge-transfer energy for the model where $T_c$ is largest. These results have implications for our understanding of superconductivity in both the cuprates and other doped charge-transfer insulators.
By introducing the possibility of equal- and opposite-spin pairings concurrently, we show that the extended attractive Hubbard model (EAHM) exhibits rich ground state phase diagrams with a variety of singlet, triplet, and mixed parity superconducting orders. We study the competition between these superconducting pairing symmetries invoking an unrestricted Hartree-Fock- Bogoliubov-de Gennes (HFBdG) mean-field approach, and we use the d-vector formalism to characterize the nature of the stabilized superconducting orders. We discover that, while all other types of orders are suppressed, a non-unitary triplet order dominates the phase space in the presence of an in-plane external magnetic field. We also find a transition between a non-unitary to unitary superconducting phase driven by the change in average electron density. Our results serve as a reference for identifying and understanding the nature of superconductivity based on the symmetries of the pairing correlations. The results further highlight that EAHM is a suitable effective model for describing most of the pairing symmetries discovered in different materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا