ﻻ يوجد ملخص باللغة العربية
2D materials provide a platform for strong light--matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light--matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure of merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design: for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators, higher index directly leads t
At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the large
We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, $n(I) = n_0 + n_2 I$, b
Photonic devices play an increasingly important role in advancing physics and engineering, and while improvements in nanofabrication and computational methods have driven dramatic progress in expanding the range of achievable optical characteristics,
Resonant modes in metamaterials have been widely utilized to amplify the optical response of 2D materials for practical device applications. However, the high loss at the resonant mode severely hinders metamaterial applications. Here, we introduce a