ﻻ يوجد ملخص باللغة العربية
A systematic review is made for the AA-, AB- and ABC-stacked graphites. The generalized tight-binding model, accompanied with the effective-mass approximation and the Kubo formula, is developed to investigate electronic and optical properties in the presence/absence of a uniform magnetic field. The unusual electronic properties cover the stacking-dependent Dirac-cone structures, the significant energy widths along the stacking direction, the Landau subbands (LSs) crossing the Fermi level, the $B_0$-dependent LS energy spectra with crossings and anti-crossings, and the monolayer- or bilayer-like Landau wavefunctions. There exist the configuration-created special structures in density of states and optical spectra. Three kinds of graphites quite differ from one another in the available inter-LS excitation channels, including the number, frequency, intensity and structures of absorption peaks. The dimensional crossover presents the main similarities and differences between graphites and graphenes; furthermore, the quantum confinement enriches the magnetic quantization phenomena in carbon nanotubes and graphene nanoribbons. The cooperative/competitive relations among the interlayer atomic interactions, dimensions and magnetic quantization are responsible for the diversified essential properties. Part of theoretical predictions are consistent with the experimental measurements.
Optical and electronic properties of two dimensional few layers graphitic silicon carbide (GSiC), in particular monolayer and bilayer, are investigated by density functional theory and found different from that of graphene and silicene. Monolayer GSi
A theoretical study of the electronic properties of nanodisks and nanocones is presented within the framework of a tight-binding scheme. The electronic densities of states and absorption coefficients are calculated for such structures with different
The electronic and optical response of Bernal stacked bilayer graphene with geometry modulation and gate voltage are studied. The broken symmetry in sublattices, one dimensional periodicity perpendicular to the domain wall and out-of-plane axis intro
A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically
We study the anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) substrate as well as twisted double bilayer graphene systems. We show that n