ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Markov models and motion in heterogeneous media

44   0   0.0 ( 0 )
 نشر من قبل Bruno Toaldo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study continuous time random walks (CTRWs) such that the holding time in each state has a distribution depending on the state itself. For such processes, we provide integro-differential (backward and forward) equations of Volterra type, exhibiting a position dependent convolution kernel. Particular attention is devoted to the case where the holding times have a power-law decaying density, whose exponent depends on the state itself, which leads to variable order fractional equations. A suitable limit yields a variable order fractional heat equation, which models anomalous diffusions in heterogeneous media.

قيم البحث

اقرأ أيضاً

Exponential relaxation to equilibrium is a typical property of physical systems, but inhomogeneities are known to distort the exponential relaxation curve, leading to a wide variety of relaxation patterns. Power law relaxation is related to fractiona l derivatives in the time variable. More general relaxation patterns are considered here, and the corresponding semi-Markov processes are studied. Our method, based on Bernstein functions, unifies three different approaches in the literature.
Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorovs backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorovs equations are identified.
We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find a condition on the Markov equivalence class for polynomial time mixing. We also investigate the ratio of Markov equivalence classes to DAGs and a Markov chain of He, Jia, and Yu for random sampling of sparse Markov equivalence classes.
102 - Andrew L. Allan 2020
We consider the filtering of continuous-time finite-state hidden Markov models, where the rate and observation matrices depend on unknown time-dependent parameters, for which no prior or stochastic model is available. We quantify and analyze how the induced uncertainty may be propagated through time as we collect new observations, and used to simultaneously provide robust estimates of the hidden signal and to learn the unknown parameters, via techniques based on pathwise filtering and new results on the optimal control of rough differential equations.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit e horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا