ترغب بنشر مسار تعليمي؟ اضغط هنا

On Algorithms for $L$-bounded Cut Problem

80   0   0.0 ( 0 )
 نشر من قبل Petr Kolman
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Petr Kolman




اسأل ChatGPT حول البحث

Given a graph $G=(V,E)$ with two distinguished vertices $s,tin V$ and an integer parameter $L>0$, an {em $L$-bounded cut} is a subset $F$ of edges (vertices) such that the every path between $s$ and $t$ in $Gsetminus F$ has length more than $L$. The task is to find an $L$-bounded cut of minimum cardinality. Though the problem is very simple to state and has been studied since the beginning of the 70s, it is not much understood yet. The problem is known to be $cal{NP}$-hard to approximate within a small constant factor even for $Lgeq 4$ (for $Lgeq 5$ for the vertex cuts). On the other hand, the best known approximation algorithm for general graphs has approximation ratio only $mathcal{O}({n^{2/3}})$ in the edge case, and $mathcal{O}({sqrt{n}})$ in the vertex case, where $n$ denotes the number of vertices. We show that for planar graphs, it is possible to solve both the edge- and the vertex-version of the problem optimally in time $mathcal{O}(L^{3L}n)$. That is, the problem is fixed parameter tractable (FPT) with respect to $L$ on planar graphs. Furthermore, we show that the problem remains FPT even for bounded genus graphs, a super class of planar graphs. Our second contribution deals with approximations of the vertex version of the problem. We describe an algorithm that for a given a graph $G$, its tree decomposition of treewidth $tau$ and vertices $s$ and $t$ computes a $tau$-approximation of the minimum $L$-bounded $s-t$ vertex cut; if the decomposition is not given, then the approximation ratio is $mathcal{O}(tau sqrt{log tau})$. For graphs with treewidth bounded by $mathcal{O}(n^{1/2-epsilon})$ for any $epsilon>0$, but not by a constant, this is the best approximation in terms of~$n$ that we are aware of.



قيم البحث

اقرأ أيضاً

Given a graph $G=(V,E)$ with two distinguished vertices $s,tin V$ and an integer $L$, an {em $L$-bounded flow} is a flow between $s$ and $t$ that can be decomposed into paths of length at most $L$. In the {em maximum $L$-bounded flow problem} the tas k is to find a maximum $L$-bounded flow between a given pair of vertices in the input graph. The problem can be solved in polynomial time using linear programming. However, as far as we know, no polynomial-time combinatorial algorithm for the $L$-bounded flow is known. The only attempt, that we are aware of, to describe a combinatorial algorithm for the maximum $L$-bounded flow problem was done by Koubek and v{R}i ha in 1981. Unfortunately, their paper contains substantional flaws and the algorithm does not work; in the first part of this paper, we describe these problems. In the second part of this paper we describe a combinatorial algorithm based on the exponential length method that finds a $(1+epsilon)$-approximation of the maximum $L$-bounded flow in time $O(epsilon^{-2}m^2 Llog L)$ where $m$ is the number of edges in the graph. Moreover, we show that this approach works even for the NP-hard generalization of the maximum $L$-bounded flow problem in which each edge has a length.
Consider the following 2-respecting min-cut problem. Given a weighted graph $G$ and its spanning tree $T$, find the minimum cut among the cuts that contain at most two edges in $T$. This problem is an important subroutine in Kargers celebrated random ized near-linear-time min-cut algorithm [STOC96]. We present a new approach for this problem which can be easily implemented in many settings, leading to the following randomized min-cut algorithms for weighted graphs. * An $O(mfrac{log^2 n}{loglog n} + nlog^6 n)$-time sequential algorithm: This improves Kargers $O(m log^3 n)$ and $O(mfrac{(log^2 n)log (n^2/m)}{loglog n} + nlog^6 n)$ bounds when the input graph is not extremely sparse or dense. Improvements over Kargers bounds were previously known only under a rather strong assumption that the input graph is simple [Henzinger et al. SODA17; Ghaffari et al. SODA20]. For unweighted graphs with parallel edges, our bound can be improved to $O(mfrac{log^{1.5} n}{loglog n} + nlog^6 n)$. * An algorithm requiring $tilde O(n)$ cut queries to compute the min-cut of a weighted graph: This answers an open problem by Rubinstein et al. ITCS18, who obtained a similar bound for simple graphs. * A streaming algorithm that requires $tilde O(n)$ space and $O(log n)$ passes to compute the min-cut: The only previous non-trivial exact min-cut algorithm in this setting is the 2-pass $tilde O(n)$-space algorithm on simple graphs [Rubinstein et al., ITCS18] (observed by Assadi et al. STOC19). In contrast to Kargers 2-respecting min-cut algorithm which deploys sophisticated dynamic programming techniques, our approach exploits some cute structural properties so that it only needs to compute the values of $tilde O(n)$ cuts corresponding to removing $tilde O(n)$ pairs of tree edges, an operation that can be done quickly in many settings.
We study two variants of textsc{Maximum Cut}, which we call textsc{Connected Maximum Cut} and textsc{Maximum Minimal Cut}, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas textsc{Maximum Cut} on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size.
Let $G$ be an $n$-vertex graph with $m$ edges. When asked a subset $S$ of vertices, a cut query on $G$ returns the number of edges of $G$ that have exactly one endpoint in $S$. We show that there is a bounded-error quantum algorithm that determines a ll connected components of $G$ after making $O(log(n)^6)$ many cut queries. In contrast, it follows from results in communication complexity that any randomized algorithm even just to decide whether the graph is connected or not must make at least $Omega(n/log(n))$ many cut queries. We further show that with $O(log(n)^8)$ many cut queries a quantum algorithm can with high probability output a spanning forest for $G$. En route to proving these results, we design quantum algorithms for learning a graph using cut queries. We show that a quantum algorithm can learn a graph with maximum degree $d$ after $O(d log(n)^2)$ many cut queries, and can learn a general graph with $O(sqrt{m} log(n)^{3/2})$ many cut queries. These two upper bounds are tight up to the poly-logarithmic factors, and compare to $Omega(dn)$ and $Omega(m/log(n))$ lower bounds on the number of cut queries needed by a randomized algorithm for the same problems, respectively. The key ingredients in our results are the Bernstein-Vazirani algorithm, approximate counting with OR queries, and learning sparse vectors from inner products as in compressed sensing.
We present a practically efficient algorithm for maintaining a global minimum cut in large dynamic graphs under both edge insertions and deletions. While there has been theoretical work on this problem, our algorithm is the first implementation of a fully-dynamic algorithm. The algorithm uses the theoretical foundation and combines it with efficient and finely-tuned implementations to give an algorithm that can maintain the global minimum cut of a graph with rapid update times. We show that our algorithm gives up to multiple orders of magnitude speedup compared to static approaches both on edge insertions and deletions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا