ترغب بنشر مسار تعليمي؟ اضغط هنا

The Structure of the Broad-Line Region In Active Galactic Nuclei. II. Dynamical Modeling of Data from the AGN10 Reverberation Mapping Campaign

85   0   0.0 ( 0 )
 نشر من قبل Catherine Grier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present inferences on the geometry and kinematics of the broad-Hbeta line-emitting region in four active galactic nuclei monitored as a part of the fall 2010 reverberation mapping campaign at MDM Observatory led by the Ohio State University. From modeling the continuum variability and response in emission-line profile changes as a function of time, we infer the geometry of the Hbeta- emitting broad line regions to be thick disks that are close to face-on to the observer with kinematics that are well-described by either elliptical orbits or inflowing gas. We measure the black hole mass to be log (MBH) = 7.25 (+/-0.10) for Mrk 335, 7.86 (+0.20, -0.17) for Mrk 1501, 7.84 (+0.14, -0.19) for 3C 120, and 6.92 (+0.24, -0.23) for PG 2130+099. These black hole mass measurements are not based on a particular assumed value of the virial scale factor f, allowing us to compute individual f factors for each target. Our results nearly double the number of targets that have been modeled in this manner, and investigate the properties of a more diverse sample by including previously modeled objects. We measure an average scale factor f in the entire sample to be log10(f) = 0.54 +/- 0.17 when the line dispersion is used to characterize the line width, which is consistent with values derived using the normalization of the MBH-sigma relation. We find that the scale factor f for individual targets is likely correlated with the black hole mass, inclination angle, and opening angle of the broad line region but we do not find any correlation with the luminosity.



قيم البحث

اقرأ أيضاً

Despite many decades of study, the kinematics of the broad-line region of 3C~273 are still poorly understood. We report a new, high signal-to-noise, reverberation mapping campaign carried out from November 2008 to March 2018 that allows the determina tion of time lags between emission lines and the variable continuum with high precision. The time lag of variations in H$beta$ relative to those of the 5100 Angstrom continuum is $146.8_{-12.1}^{+8.3}$ days in the rest frame, which agrees very well with the Paschen-$alpha$ region measured by the GRAVITY at The Very Large Telescope Interferometer. The time lag of the H$gamma$ emission line is found to be nearly the same as for H$beta$. The lag of the Fe II emission is $322.0_{-57.9}^{+55.5}$ days, longer by a factor of $sim$2 than that of the Balmer lines. The velocity-resolved lag measurements of the H$beta$ line show a complex structure which can be possibly explained by a rotation-dominated disk with some inflowing radial velocity in the H$beta$-emitting region. Taking the virial factor of $f_{rm BLR} = 1.3$, we derive a BH mass of $M_{bullet} = 4.1_{-0.4}^{+0.3} times 10^8 M_{odot}$ and an accretion rate of $9.3,L_{rm Edd},c^{-2}$ from the H$beta$ line. The decomposition of its $HST$ images yields a host stellar mass of $M_* = 10^{11.3 pm 0.7} M_odot$, and a ratio of $M_{bullet}/M_*approx 2.0times 10^{-3}$ in agreement with the Magorrian relation. In the near future, it is expected to compare the geometrically-thick BLR discovered by the GRAVITY in 3C 273 with its spatially-resolved torus in order to understand the potential connection between the BLR and the torus.
Most results of the reverberation monitoring of active galaxies showed a universal scaling of the time delay of the Hbeta emission region with the monochromatic flux at 5100 A, with very small dipersion. Such a scaling favored the dust-based formatio n mechanism of the Broad Line Region (BLR). Recent reverberation measurements showed that actually a significant fraction of objects exhibits horter lags than the previously found scaling. Here we demonstrate that these shorter lags can be explained by the old concept of scaling of the BLR size with the ionization parameter. Assuming a universal value of this parameter and universal value of the cloud density reproduces the distribution of observational points in the time delay vs. monochromatic flux plane, provided that a range of black hole spins is allowed. However, a confirmation of the new measurements for low/moderate Eddington ratio sources is strongly needed before the dust-based origin of the BLR can be excluded.
97 - Pu Du , Jian-Min Wang , Chen Hu 2016
Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by ${cal D}_{_{rm Hbeta}}={rm FWHM}/sig ma_{_{rm Hbeta}}$, the ratio of full width at half maximum to the dispersion of broad H$beta$, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate ($dot{mathscr{M}}$) or Eddington ratio ($L_{rm bol}/L_{rm Edd}$). At the same time, $dot{mathscr{M}}$ and $L_{rm bol}/L_{rm Edd}$ correlate with ${cal R}_{rm Fe}$, the ratio of optical Fe II to H$beta$ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad H$beta$, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form $log(dot{mathscr{M}},L_{rm bol}/L_{rm Edd})=alpha+beta{cal D}_{_{rm Hbeta}}+gamma{cal R}_{rm Fe},$ where $alpha=(2.47,0.31)$, $beta=-(1.59,0.82)$ and $gamma=(1.34,0.80)$. We refer to this as the fundamental plane of the BLR. We apply the plane to a sample of $z < 0.8$ quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.
96 - Chen Hu 2020
As one of the most interesting Seyfert 1 galaxies, PG 2130+099 has been the target of several reverberation mapping (RM) campaigns over the years. However, its measured broad H$beta$ line responses have been inconsistent, with time lags of $sim$200 d ays, $sim$25 days, and $sim$10 days being reported for different epochs while its optical luminosity changed no more than 40%. To investigate this issue, we conducted a new RM-campaign with homogenous and high cadence (about $sim$3 days) for two years during 2017--2019 to measure the kinematics and structure of the ionized gas. We successfully detected time lags of broad H$beta$, He II, He I, and Fe II lines with respect to the varying 5100AA continuum, revealing a stratified structure that is likely virialized with Keplerian kinematics in the first year of observations, but an inflow kinematics of the broad-line region from the second year. With a central black hole mass of $0.97_{-0.18}^{+0.15}times 10^7~M_{odot}$, PG 2130+099 has an accretion rate of $10^{2.1pm0.5}L_{rm Edd}c^{-2}$, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is speed of light, implying that it is a super-Eddington accretor and likely possesses a slim, rather than thin, accretion disk. The fast changes of the ionization structures of the three broad lines remain puzzling.
561 - Sha-Sha Li , Sen Yang , Zi-Xu Yang 2021
We report the results of a multi-year spectroscopic and photometric monitoring campaign of two luminous quasars, PG~0923+201 and PG~1001+291, both located at the high-luminosity end of the broad-line region (BLR) size-luminosity relation with optical luminosities above $10^{45}~{rm erg~s^{-1}}$. PG~0923+201 is for the first time monitored, and PG~1001+291 was previously monitored but our campaign has a much longer temporal baseline. We detect time lags of variations of the broad H$beta$, H$gamma$, Fe {sc ii} lines with respect to those of the 5100~{AA} continuum. The velocity-resolved delay map of H$beta$ in PG~0923+201 indicates a complicated structure with a mix of Keplerian disk-like motion and outflow, and the map of H$beta$ in PG~1001+291 shows a signature of Keplerian disk-like motion. Assuming a virial factor of $f_{rm BLR}=1$ and FWHM line widths, we measure the black hole mass to be $118_{-16}^{+11}times 10^7 M_{odot}$ for PG~0923+201 and $3.33_{-0.54}^{+0.62}times 10^7 M_{odot}$ for PG~1001+291. Their respective accretion rates are estimated to be $0.21_{-0.07}^{+0.06} times L_{rm Edd},c^{-2}$ and $679_{-227}^{+259}times L_{rm Edd},c^{-2}$, indicating that PG~0923+201 is a sub-Eddington accretor and PG~1001+291 is a super-Eddington accretor. While the H$beta$ time lag of PG~0923+201 agrees with the size-luminosity relation, the time lag of PG~1001+291 shows a significant deviation, confirming that in high-luminosity AGN the BLR size depends on both luminosity and Eddington ratio. Black hole mass estimates from single AGN spectra will be over-estimated at high luminosities and redshifts if this effect is not taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا