ترغب بنشر مسار تعليمي؟ اضغط هنا

Self Consistent Path Sampling: Making Accurate All-Atom Protein Folding Simulations Possible on Small Computer Clusters

77   0   0.0 ( 0 )
 نشر من قبل Pietro Faccioli
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a powerful iterative algorithm to compute protein folding pathways, with realistic all-atom force fields. Using the path integral formalism, we explicitly derive a modified Langevin equation which samples directly the ensemble of reactive pathways, exponentially reducing the cost of simulating thermally activated transitions. The algorithm also yields a rigorous stochastic estimate of the reaction coordinate. After illustrating this approach on a simple toy model, we successfully validate it against the results of ultra-long plain MD protein folding simulations for a fast folding protein (Fip35), which were performed on the Anton supercomputer. Using our algorithm, computing a folding trajectory for this protein requires only 1000 core hours, a computational load which could be even carried out on a desktop workstation.



قيم البحث

اقرأ أيضاً

The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given for various levels of the nonlinearity of source and the strength of interaction between protein backbone and nonlinear source. It is found that the nonlinear source contributes constructively to the specific heat especially at higher temperature when it is weakly interacting with the protein backbone. This indicates increasing energy absorption as the intensity of nonlinear sources are getting greater. The simulation of protein folding dynamics within the model is also refined.
We develop a theoretical approach to the protein folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps in the protein folding problem a re removed and simulating the entire reaction in atomistic details using existing computers becomes feasible. In addition, this formalism provides a natural framework to investigate the relationships between thermodynamical and kinetic aspects of the folding. For example, it is possible to show that, in order to have a large probability to remain unchanged under Langevin diffusion, the native state has to be characterized by a small conformational entropy. We discuss how to determine the most probable folding pathway, to identify configurations representative of the transition state and to compute the most probable transition time. We perform an illustrative application of these ideas, studying the conformational evolution of alanine di-peptide, within an all-atom model based on the empiric GROMOS96 force field.
Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between a ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.
152 - Franc{c}ois Boue 2012
We study by Small Angle Neutron Scattering (SANS) the structure of Hyaluronan -Lysozyme complexes. Hyaluronan (HA) is a polysaccharide of 9 nm intrinsic persistence length that bears one negative charge per disaccharide monomer (Mmol = 401.3 g/mol); two molecular weights, Mw = 6000 and 500 000 Da were used. The pH was adjusted at 4.7 and 7.4 so that lysozyme has a global charge of +10 and + 8 respectively. The lysozyme concentration was varied from 3 to 40 g/L, at constant HA concentration (10 g/L). At low protein concentration, samples are monophasic and SANS experiments reveal only fluctuations of concentration although, at high protein concentration, clusters are observed by SANS in the dense phase of the diphasic samples. In between, close to the onset of the phase separation, a distinct original scattering is observed. It is characteristic of a rod-like shape, which could characterize single complexes involving one or a few polymer chains. For the large molecular weight (500 000) the rodlike rigid domains extend to much larger length scale than the persistence length of the HA chain alone in solution and the range of the SANS investigation. They can be described as a necklace of proteins attached along a backbone of diameter one or a few HA chains. For the short chains (Mw ~ 6000), the rod length of the complexes is close to the chain contour length (~ 15 nm).
An exactly solvable model based on the topology of a protein native state is applied to identify bottlenecks and key-sites for the folding of HIV-1 Protease. The predicted sites are found to correlate well with clinical data on resistance to FDA-appr oved drugs. It has been observed that the effects of drug therapy are to induce multiple mutations on the protease. The sites where such mutations occur correlate well with those involved in folding bottlenecks identified through the deterministic procedure proposed in this study. The high statistical significance of the observed correlations suggests that the approach may be promisingly used in conjunction with traditional techniques to identify candidate locations for drug attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا