ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental verification of entanglement generated in a plasmonic system

100   0   0.0 ( 0 )
 نشر من قبل Mark Tame
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A core process in many quantum tasks is the generation of entanglement. It is being actively studied in a variety of physical settings - from simple bipartite systems to complex multipartite systems. In this work we experimentally study the generation of bipartite entanglement in a nanophotonic system. Entanglement is generated via the quantum interference of two surface plasmon polaritons in a beamsplitter structure, i.e. utilising the Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state tomography. The amount of entanglement is quantified by the concurrence and we find values of up to 0.77 +/- 0.04. Verifying entanglement in the output state from HOM interference is a nontrivial task and cannot be inferred from the visibility alone. The techniques we use to verify entanglement could be applied to other types of photonic system and therefore may be useful for the characterisation of a range of different nanophotonic quantum devices.



قيم البحث

اقرأ أيضاً

Entanglement and quantum interference are key ingredients in a variety of quantum information processing tasks. Harnessing the generation and characterization of entanglement in high-dimensional state spaces is a necessary prerequisite towards practi cal quantum protocols. Here, we use quantum interference on a beam splitter to engineer hyperentanglement in polarization and discrete frequency degrees of freedom (DOF). We show how independent measurements of polarization and frequency DOF allow for the verification of high-dimensional entanglement in the combined state space. These results may indicate new paths towards practical exploitation of entanglement stored in multiple degrees of freedom, in particular in the context of high-dimensional quantum information processing protocols.
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.
Transferring entangled states between photon pairs is essential for quantum communication technologies. Semiconductor quantum dots are the most promising candidate for generating polarization-entangled photons deterministically. Recent improvements i n photonic quality and brightness now make them suited for complex quantum optical purposes in practical devices. Here we demonstrate for the first time swapping of entangled states between two pairs of photons emitted by a single quantum dot. A joint Bell measurement heralds the successful generation of the Bell state $Psi^+$ with a fidelity of up to $0.81 pm 0.04$. The states nonlocal nature is confirmed by violating the CHSH-Bell inequality. Our photon source is compatible with atom-based quantum memories, enabling implementation of hybrid quantum repeaters. This experiment thus is a major step forward for semiconductor based quantum communication technologies.
We report on the observation of a topologically protected edge state at the interface between two topologically distinct domains of the Su-Schrieffer-Heeger model, which we implement in arrays of evanescently coupled dielectric-loaded surface plasmon polariton waveguides. Direct evidence of the topological character of the edge state is obtained through several independent experiments: Its spatial localization at the interface as well as the restriction to one sublattice is confirmed by real-space leakage radiation microscopy. The corresponding momentum-resolved spectrum obtained by Fourier imaging reveals the midgap position of the edge state as predicted by theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا