ﻻ يوجد ملخص باللغة العربية
A core process in many quantum tasks is the generation of entanglement. It is being actively studied in a variety of physical settings - from simple bipartite systems to complex multipartite systems. In this work we experimentally study the generation of bipartite entanglement in a nanophotonic system. Entanglement is generated via the quantum interference of two surface plasmon polaritons in a beamsplitter structure, i.e. utilising the Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state tomography. The amount of entanglement is quantified by the concurrence and we find values of up to 0.77 +/- 0.04. Verifying entanglement in the output state from HOM interference is a nontrivial task and cannot be inferred from the visibility alone. The techniques we use to verify entanglement could be applied to other types of photonic system and therefore may be useful for the characterisation of a range of different nanophotonic quantum devices.
Entanglement and quantum interference are key ingredients in a variety of quantum information processing tasks. Harnessing the generation and characterization of entanglement in high-dimensional state spaces is a necessary prerequisite towards practi
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks it is essential for the parties involved to be able to verify if entanglement is present before they
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on
Transferring entangled states between photon pairs is essential for quantum communication technologies. Semiconductor quantum dots are the most promising candidate for generating polarization-entangled photons deterministically. Recent improvements i
We report on the observation of a topologically protected edge state at the interface between two topologically distinct domains of the Su-Schrieffer-Heeger model, which we implement in arrays of evanescently coupled dielectric-loaded surface plasmon