ترغب بنشر مسار تعليمي؟ اضغط هنا

AX J1910.7+0917: the slowest X-ray pulsar

365   0   0.0 ( 0 )
 نشر من قبل Lara Sidoli
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Sidoli




اسأل ChatGPT حول البحث

Pulsations from the high mass X-ray binary AXJ1910.7+0917 were discovered during Chandra observations performed in 2011 (Israel et al. 2016). We report here more details on this discovery and discuss the source nature. The period of the X-ray signal is P=36200+/-110s, with a pulsed fraction, PF, of 63+/-4%. Given the association with a massive B-type companion star, we ascribe this long periodicity to the rotation of the neutron star, making AXJ1910.7+0917 the slowest known X-ray pulsar. We report also on the spectroscopy of XMM-Newton observations that serendipitously covered the source field, resulting in an highly absorbed (column density almost reaching 1e23cm-2), power law X-ray spectrum. The X-ray flux is variable on a timescale of years, spanning a dynamic range >60. The very long neutron star spin period can be explained within a quasi-spherical settling accretion model, that applies to low luminosity, wind-fed, X-ray pulsars.



قيم البحث

اقرأ أيضاً

161 - L. Pavan , E. Bozzo , C. Ferrigno 2010
We take advantage of the high sensitivity of the IBIS/ISGRI telescope and the improvements in the data analysis software to investigate the nature of the still poorly known X-ray source AX J1910.7+0917, and search for close-by previously undetected o bjects. We analyze all publicly available INTEGRAL data of AX J1910.7+0917, together with a number of archival observations that were carried out in the direction of the source with Chandra, XMM-Newton, and ASCA. In the IBIS/ISGRI field-of-view around AX J1910.7+0917, we discovered three new sources: IGR J19173+0747, IGR J19294+1327 and IGR J19149+1036; the latter is positionally coincident with the Einstein source 2E 1912.5+1031. For the first two sources, we also report the results of follow-up observations carried out with Swift/XRT. AX J1910.7+0917 features a clear variability in the X-rays. Its spectrum can be well described with an absorbed (N_H~6x10^(22) cm^(-2)) power-law ({Gamma}~1.5) model plus an iron line at ~6.4 keV. We also obtained a refined position and report on possible infrared counterparts. The present data do not allow for a unique classification of the sources. Based on the property of its X-ray emission and the analysis of a likely infrared counterpart, we investigate different possibilities for the nature of AX J1910.7+0917.
71 - Ivan Zolotukhin 2016
Neutron stars are thought to be born rapidly rotating and then exhibit a phase of a rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recyclin g concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with $P_{rm spin} = 1.20$ s in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up-to 30% of the Eddington luminosity) spinning-up pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hz. The neutron star in this unique wide binary with an orbital period $P_{rm orb} = 30.5$ h in a 12 Gyr old, metal rich star cluster, accretes from a low mass, slightly evolved post-main sequence companion. We argue that we are witnessing a binary formed at relatively recent epoch by getting a $sim 0.8M_odot$ star in a dynamical interaction -- a viable scenario in a massive dense globular cluster like B091D with high global and specific stellar encounter rates. This intensively accreting non-recycled X-ray pulsar provides therefore a long-sought missing piece in the standard pulsar recycling picture.
GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: missing link systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.
97 - F.F. Kou , H.Tong , R. X. Xu 2019
We apply theoretical spin-down models of magnetospheric evolution and magnetic field decay to simulate the possible evolution of PSR J0250+5854, which is the slowest-spinning radio pulsar detected to date. Considering the alignment of inclination ang le in a 3-D magnetosphere, it is possible that PSR J0250+5854 has a high magnetic field comparable with magnetars or/and high magnetic field pulsars, if a small inclination angle is considered. Our calculations show that similar long-period pulsars tend to have a relatively low period derivative in this case. In another case of magnetic field decay, calculations also show a possible connection between PSR J0250+5854 and high dipole-magnetic field magnetars. The evolutionary path indicates a relatively high spin-down rate for similar long-period pulsars.
102 - C. R. Tam 2006
The population of clearly identified anomalous X-ray pulsars has recently grown to seven, however, one candidate anomalous X-ray pulsar (AXP) still eludes re-confirmation. Here, we present a set of seven Chandra ACIS-S observations of the transient p ulsar AX J1845.0-0258, obtained during 2003. Our observations reveal a faint X-ray point source within the ASCA error circle of AX J1845.0-0258s discovery, which we designate CXOU J184454.6-025653 and tentatively identify as the quiescent AXP. Its spectrum is well described by an absorbed single-component blackbody (kT~2.0 keV) or power law (Gamma~1.0) that is steady in flux on timescales of at least months, but fainter than AX J1845.0-0258 was during its 1993 period of X-ray enhancement by at least a factor of 13. Compared to the outburst spectrum of AX J1845.0-0258, CXOU J184454.6-025653 is considerably harder: if truly the counterpart, then its spectral behaviour is contrary to that seen in the established transient AXP XTE J1810-197, which softened from kT~0.67 keV to ~0.18 keV in quiescence. This unexpected result prompts us to examine the possibility that we have observed an unrelated source, and we discuss the implications for AXPs, and magnetars in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا