ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Resolved Ejecta in the Nearest Tidal Disruption Event

114   0   0.0 ( 0 )
 نشر من قبل Eric S. Perlman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eric S. Perlman




اسأل ChatGPT حول البحث

Tidal disruption events (TDEs) occur when a star or sub-stellar object passes close enough to a galaxys supermassive black hole to be disrupted by tidal forces. NGC 4845 (d=17 Mpc) was host to a TDE, IGR J12580+0134, detected in November 2010. Its proximity offers us a unique close-up of the TDE and its aftermath. We discuss new Very Long Baseline Array (VLBA) and Karl G. Jansky Very Large Array (JVLA) observations, which show that the radio flux from the active nucleus created by the TDE has decayed in a manner consistent with predictions from a jet-circumnuclear medium interaction model. This model explains the sources broadband spectral evolution, which shows a spectral peak that has moved from the submm (at the end of 2010) to GHz radio frequencies (in 2011-2013) to <1 GHz in 2015. The milliarcsecond-scale core is circularly polarized at 1.5 GHz but not at 5 GHz, consistent with the model. The VLBA images show a complex structure at 1.5 GHz that includes an east west extension ~40 milliarcsec (3 pc) long as well as a resolved component 52 milliarcsec (4.1 pc) northwest of the flat-spectrum core, which is all that can be seen at 5 GHz. If ejected in 2010, the NW component must have had v=0.96 c over five years. However, this is unlikely, as our model suggests strong deceleration to speeds < 0.5c within months and a much smaller, sub-parsec size. In this interpretation, the northwest component could have either a non-nuclear origin or be from an earlier event.

قيم البحث

اقرأ أيضاً

112 - C.S. Kochanek 2016
We survey the properties of stars destroyed in TDEs as a function of BH mass, stellar mass and evolutionary state, star formation history and redshift. For Mbh<10^7Msun, the typical TDE is due to a M*~0.3Msun M-dwarf, although the mass function is re latively flat for $M*<Msun. The contribution from older main sequence stars and sub-giants is small but not negligible. From Mbh~10^7.5-10^8.5Msun, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by Mbh~10^6.0-10^7.5Msun BHs with roughly Eddington peak accretion rates. The typical fall back time is relatively long, with 16% having Tfb<10^(-1) years (37 days), and 84% having longer time scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer Tfb, which seems very plausible if Tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time scale TDEs in smaller galaxies, and longer time scale TDEs in more massive galaxies are likely to be rewarded.
75 - R.D. Saxton 2019
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was det ected from the galaxy XMMSL2 J144605.0+685735 (a.k.a. 2MASX 14460522+6857311), a factor 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ~100 days and then fell by a factor 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V bands) have been roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of $127pm{4}$ Mpc (z=$0.029pm{0.001}$) with a spectrum consisting of a young stellar population of age 1-5 Gyr, an older population and a total stellar mass of ~6 x $10^{9}$ solar masses. The bolometric luminosity peaked at L bol ~ $10^{43}$ ergs s$^{-1}$ with an X-ray spectrum that may be modeled by a power-law of $Gamma$~2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10$mu$Jy, which limits the total energy of a hypothetical off-axis jet to E < 5 x $10^{50}$ ergs. The independent behaviour of the optical, UV and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disk and the X-rays from Compton upscattering of these disk photons.
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to withi n ~1 year. Here we report the discovery of a well observed super-long (>11 years) luminous soft X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are generally soft (steeply declining towards higher energies) and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event of an unusually long super-Eddington accretion phase that has never been observed before.
Radio observations of tidal disruption events (TDEs) - when a star is tidally disrupted by a supermassive black hole (SMBH) - provide a unique laboratory for studying outflows in the vicinity of SMBHs and their connection to accretion onto the SMBH. Radio emission has been detected in only a handful of TDEs so far. Here, we report the detection of delayed radio flares from an optically-discovered TDE. Our prompt radio observations of the TDE ASASSN-15oi showed no radio emission until the detection of a flare six months later, followed by a second and brighter flare, years later. We find that the standard scenario, in which an outflow is launched briefly after the stellar disruption, is unable to explain the combined temporal and spectral properties of the delayed flare. We suggest that the flare is due to the delayed ejection of an outflow, perhaps following a transition in accretion states. Our discovery motivates observations of TDEs at various timescales and highlights a need for new models.
RBS 1032 is a supersoft ($Gammasim5$), luminous ($sim10^{43}$ erg/s) ROSAT PSPC source which has been associated with an inactive dwarf galaxy at $z=0.026$, SDSS J114726.69+494257.8. We have analyzed an XMM-Newton observation which confirms that RBS 1032 is indeed associated with the dwarf galaxy. Moreover, RBS 1032 has undergone a factor of $sim100-300$ decay since November 1990. This variability suggests that RBS 1032 may not be a steadily accreting intermediate-mass black hole, but rather an accretion flare from the tidal disruption of a star by the central black hole (which may or may not be intermediate-mass). We suggest that additional tidal disruption events may remain unidentified in archival ROSAT data, such that disruption rate estimates based upon ROSAT All-Sky Survey data may need reconsideration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا