ترغب بنشر مسار تعليمي؟ اضغط هنا

Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu$_{2}$OSeO$_{3}$

343   0   0.0 ( 0 )
 نشر من قبل Markus Garst
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear dichroism -- the polarization dependent absorption of electromagnetic waves -- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu$_{2}$OSeO$_{3}$ exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz. Unlike optical filters that are assembled from filamentary absorbers, the magnet provides linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90$^circ$ via a tiny variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with anisotropic exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.

قيم البحث

اقرأ أيضاً

Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu$_{2}$OSe O$_{3}$. For the damping of magnetization dynamics we find a remarkably small Gilbert damping parameter of about $1times10^{-4}$ at 5 K. This value is only a factor of 4 larger than the one reported for the best insulating ferrimagnet yttrium iron garnet. We detect a series of sharp resonances and attribute them to confined spin waves in the mm-sized samples. Considering the small damping, insulating chiral magnets turn out to be promising candidates when exploring non-collinear spin structures for high frequency applications.
We present an investigation into the structural and magnetic properties of Zn-substituted Cu$_{2}$OSeO$_{3}$, a system in which the skyrmion lattice (SkL) phase in the magnetic field-temperature phase diagram was previously seen to split as a functio n of increasing Zn concentration. We find that splitting of the SkL is only observed in polycrystalline samples and reflects the occurrence of several coexisting phases with different Zn content, each distinguished by different magnetic behaviour. No such multiphase behaviour is observed in single crystal samples.
462 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
CeBi has an intricate magnetic phase diagram whose fully-polarized state has recently been suggested as a Weyl semimetal, though the role of $f$ states in promoting strong interactions has remained elusive. Here we focus on the less-studied, but also time-reversal symmetry-breaking ferrimagnetic phase of CeBi, where our density functional theory (DFT) calculations predict additional Weyl nodes near the Fermi level $E_mathrm{F}$. We use spin-polarized scanning tunneling microscopy and spectroscopy to image the surface ferrimagnetic order on the itinerant Bi $p$ states, indicating their orbital hybridization with localized Ce $f$ states. We observe suppression of this spin-polarized signature at $E_mathrm{F}$, coincident with a Fano line shape in the conductance spectra, suggesting the Bi $p$ states partially Kondo screen the $f$ magnetic moments, and this $p-f$ hybridization causes strong Fermi-level band renormalization. The $p$ band flattening is supported by our quasiparticle interference (QPI) measurements, which also show band splitting in agreement with DFT, painting a consistent picture of a strongly interacting magnetic Weyl semimetal.
159 - Yifei Ni , Hengdi Zhao , Yu Zhang 2021
Colossal magnetoresistance is of great fundamental and technological significance and exists mostly in the manganites and a few other materials. Here we report colossal magnetoresistance that is starkly different from that in all other materials. The stoichiometric Mn3Si2Te6 is an insulator featuring a ferrimagnetic transition at 78 K. The resistivity drops by 7 orders of magnitude with an applied magnetic field above 9 Tesla, leading to an insulator-metal transition at up to 130 K. However, the colossal magnetoresistance occurs only when the magnetic field is applied along the magnetic hard axis and is surprisingly absent when the magnetic field is applied along the magnetic easy axis where magnetization is fully saturated. The anisotropy field separating the easy and hard axes is 13 Tesla, unexpected for the Mn ions with nominally negligible orbital momentum and spin-orbit interactions. Double exchange and Jahn-Teller distortions that drive the hole-doped manganites do not exist in Mn3Si2Te6. The phenomena fit no existing models, suggesting a unique, intriguing type of electrical transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا