ﻻ يوجد ملخص باللغة العربية
Semiconductor nanowires provide an ideal platform for various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasi-particles can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought in contact with a superconductor. To fully exploit the potential of non-Abelian anyons for topological quantum computing, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of single-crystalline nanowires coupled to superconducting islands. Here, we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks having a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire hashtags reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens new avenues for the realization of epitaxial 3-dimensional quantum device architectures.
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by ti
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semi-classical semiconductor tran
Majorana zero modes are localized quasiparticles that obey non-Abelian exchange statistics. Braiding Majorana zero modes forms the basis of topologically protected quantum operations which could in principle significantly reduce qubit decoherence and
Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with pr
Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor, several tunneling experiments rep