ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-atomic electronic feature from dynamic motion of Si dimer defects in bismuth nanolines on Si(001)

156   0   0.0 ( 0 )
 نشر من قبل David Bowler
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect free bismuth nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the bismuth nanoline at positive biases and as atomic size beads at negative biases. Density functional theory (DFT) simulations show that these features can be attributed to buckled Si dimers substituting for Bi dimers in the nanoline, where the sharp feature is the counterintuitive signature of these dimers flipping during scanning. The perfect correspondence between the STM data and the DFT simulation demonstrated in this study highlights the detailed understanding we have of the complex Bi-Si(001) Haiku system.



قيم البحث

اقرأ أيضاً

111 - S. R. Schofield 2003
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated split-off d imers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual bean-shaped protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.
Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) i mages. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy and density functional theory we find that a simple necklace-like chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modelling the electronic and magnetic properties of Mn atom chains on Si(001).
The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.
Atomic nanolines are one dimensional systems realized by assembling many atoms on a substrate into long arrays. The electronic properties of the nanolines depend on those of the substrate. Here, we demonstrate that to fully understand the electronic properties of Bi nanolines on clean Si(001) several different contributions must be accounted for. Scanning tunneling microscopy reveals a variety of different patterns along the nanolines as the imaging bias is varied. We observe an electronic phase shift of the Bi dimers, associated with imaging atomic p-orbitals, and an electronic coupling between the Bi nanoline and neighbouring Si dimers, which influences the appearance of both. Understanding the interplay between the Bi nanolines and Si substrate could open a novel route to modifying the electronic properties of the nanolines.
179 - Zhuhua Zhang , , Wanlin Guo 2009
We show by first-principles calculations that the electronic properties of zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chai ns across their width adsorbed perpendicularly to the Si dimer rows possess an energy gap, while wider Z-GNRs are metallic due to width-dependent interface hybridization. The Z-GNRs can be metastably adsorbed parallel to the Si dimer rows, but show uniform metallic nature independent of ribbon width due to adsorption induced dangling-bond states on the Si surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا