ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable quantum entanglement of three qubits in a non-stationary cavity

78   0   0.0 ( 0 )
 نشر من قبل Roman Kezerashvili
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the tunable quantum entanglement and the probabilities of excitations in a system of three qubits in a non-stationary cavity due to the dynamical Lamb effect, caused by non-adiabatic fast change of the boundary conditions of the cavity. The transition amplitudes and the probabilities of excitation of qubits due to the dynamical Lamb effect have been evaluated. The conditional concurrence and the conditional residual tangle for each fixed amount of created photons are introduced and calculated as measures of the pairwise or three-way dynamical quantum entanglement of the qubits. We also give a prescription on how to increase the values of those quantities by controlling the frequency of the cavity photons. A physical realization of the system with three superconducting qubits, coupled to a coplanar waveguide entangled due to the non-adiabatic fast change of boundary conditions of the cavity is proposed.

قيم البحث

اقرأ أيضاً

We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime . Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.
85 - WenBin He , Xi-Wen Guan 2019
Motivated by recent experimental study on coherent dynamics transfer in three interacting atoms or electron spins cite{Barredo:2015,Rosenfeld:2018}, here we study entanglement entropy transfer in three interacting qubits. We analytically calculate ti me evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. So that dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer, characterized by the quantum mutual information and concurence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles, and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, these paths transition parameters determine the phase and amplitude of the final entangled state, unless the memory is initially prepared in a superposition state, a step that requires coherent control. Here we report the fully tunable entanglement of a single 40Ca+ ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus presents itself as a promising method for distributing information within quantum networks.
Large scale quantum computers will consist of many interacting qubits. In this paper we expand the two flux qubit coupling scheme first devised in [Phys. Rev. B {bf 70}, 140501 (2004)] and realized in [Science {bf 314}, 1427 (2006)] to a three-qubit, two-coupler scenario. We study L-shaped and line-shaped coupler geometries, and show how the interaction strength between qubits changes in terms of the couplers dimensions. We explore two cases: the on-state where the interaction energy between two nearest-neighbor qubits is high, and the off-state where it is turned off. In both situations we study the undesirable crosstalk with the third qubit. Finally, we use the GRAPE algorithm to find efficient pulse sequences for two-qubit gates subject to our calculated physical constraints on the coupling strength.
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconduc ting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly-excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and 86% (maximum likelihood estimator).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا