ترغب بنشر مسار تعليمي؟ اضغط هنا

Insights on star formation histories and physical properties of $1.2 leq z lesssim 4 $ Herschel-detected galaxies

252   0   0.0 ( 0 )
 نشر من قبل Panos Sklias
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the impact of using variable star forming histories (SFHs) and the use of the IR luminosity (LIR) as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the stellar properties of galaxies in relation with their location on the SFR-M* diagram. We perform SED fitting of the UV-NIR and FIR emissions of a large sample of GOODS-Herschel galaxies, for which rich multi-wavelength observations are available. We test different SFHs and imposing energy conservation in the SED fitting process, to face issues like the age-extinction degeneracy and produce SEDs consistent with observations. Our models work well for the majority of the sample, with the notable exception of the high LIR end, for which we have indications that our simple energy conservation approach cannot hold true. We find trends in the SFHs fitting our sources depending on stellar mass M* and z. Trends also emerge in the characteristic timescales of the SED models depending on the location on the SFR-M* diagram. We show that whilst using the same available observational data, we can produce galaxies less star-forming than usually inferred, if we allow declining SFHs, while properly reproducing their observables. These sources can be post-starbursts undergoing quenching, and their SFRs are potentially overestimated if inferred from their LIR. Fitting without the IR constrain leads to a strong preference for declining SFHs, while its inclusion increases the preference of rising SFHs, more so at high z, in tentative agreement with the cosmic star formation history. Keeping in mind that the sample is biased towards high LIR, the evolution shaped by our model appears as both bursty (initially) and steady-lasting (later on). The global SFH of the sample follows the cosmic SFH with a small scatter, and is compatible with the downsizing scenario of galaxy evolution.

قيم البحث

اقرأ أيضاً

86 - Keunho Kim 2018
We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.4 4$ at 0.6 $lesssim z lesssim$ 1.2. We have identified authentically quiescent galaxies in the $UVJ$ diagram based on their D4000 strengths. This spectroscopic identification is in good agreement with their photometrically-derived specific star formation rates (sSFR). Morphologically, most (that is, 66 out of 68 galaxies, $sim$ 97 %) of these newly identified quiescent galaxies have a prominent bulge component. However, not all of the bulge-dominated galaxies are quenched. We found that bulge-dominated galaxies show positive correlations among the D4000 strength, stellar mass, and the Sersic index, while late-type disks do not show such strong positive correlations. Also, bulge-dominated galaxies are clearly separated into two main groups in the parameter space of sSFR vs. stellar mass and stellar surface density within the effective radius, $Sigma_{rm e}$, while late-type disks and irregulars only show high sSFR. This split is directly linked to the `blue cloud and the `red sequence populations, and correlates with the associated central compactness indicated by $Sigma_{rm e}$. While star-forming massive late-type disks and irregulars (with D4000 $<$ 1.5 and log$(M_{*}/M_{odot}) gtrsim 10.5$) span a stellar mass range comparable to bulge-dominated galaxies, most have systematically lower $Sigma_{rm e}$ $lesssim$ $10^{9}M_{odot}rm{kpc^{-2}}$. This suggests that the presence of a bulge is a necessary but not sufficient requirement for quenching at intermediate redshifts.
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi ng to measure $f_{rm{esc}}$, and use ground- and space-based photometry to derive galaxy physical properties using spectral energy distribution (SED) fitting. We additionally derive [O,textsc{iii}],+,H$beta$ equivalent widths (that fall in the observed $K$ band) by including nebular emission in the SED fitting. After removing foreground contaminants, we report the discovery of 11 new candidate LyC leakers, with absolute LyC escape fractions, $f_{rm{esc}}$ in the range $0.07-0.52$. Most galaxies in our sample ($approx94%$) do not show any LyC leakage, and we place $1sigma$ upper limits of $f_{rm{esc}} < 0.07$ through weighted averaging, where the Lyman-break selected galaxies have $f_{rm{esc}} < 0.07$ and `blindly discovered galaxies with no prior photometric selection have $f_{rm{esc}} < 0.10$. We additionally measure $f_{rm{esc}} < 0.09$ for extreme emission line galaxies in our sample with rest-frame [O,textsc{iii}],+,H$beta$ equivalent widths $>300$,AA. For the candidate LyC leakers, we do not find a strong dependence of $f_{rm{esc}}$ on their stellar masses and/or specific star-formation rates, and no correlation between $f_{rm{esc}}$ and EW$_0$([O,textsc{iii}],+,H$beta$). We suggest that this lack of correlations may be explained by viewing angle and/or non-coincident timescales of starburst activity and periods of high $f_{rm{esc}}$. Alternatively, escaping radiation may predominantly occur in highly localised star-forming regions, thereby obscuring any global trends with galaxy properties. Both hypotheses have important consequences for models of reionisation.
We present Keck-MOSFIRE H and K spectra for a sample of 24 candidate quiescent galaxies (QGs) at 3<z<4, identified from UVJ colors and photometric redshifts in the ZFOURGE and 3DHST surveys. We obtain spectroscopic redshifts for half of the sample, u sing absorption or emission lines, and confirm the high accuracy of the photometric redshifts with a median error of 1.2%. Two galaxies turn out to be dusty objects at lower redshifts (z<2.5), and are the only two detected in the sub-mm with ALMA. High equivalent-width [OIII] was observed in two galaxies, contributing up to 30% of the K-band flux and mimicking the colors of an old stellar population. This implies a failure rate of only 20% for the UVJ selection at these redshifts. Balmer absorption was identified in 4 of the brighest galaxies, confirming the absence of OB stars. Modeling all QGs with a wide range of star-formation histories, we find sSFR a factor of 10 below the main sequence (MS) for all but one galaxy, and less than 0.01 Gyr$^{-1}$ for half of the sample. This is consistent with the H$beta$ and [OII] luminosities, and the ALMA non-detections. We then find that these QGs have quenched on average 300 Myr before observation, between z=3.5 and 5, and that they formed at z~5.5 with a mean SFR~300 Msun/yr. Considering an alternative selection of QGs based solely on the sSFR from SED modeling, we find that galaxies a factor 10 below the MS are 40% more numerous than UVJ-quiescent galaxies, implying that the UVJ selection is pure but incomplete. Current models fail at reproducing our observations and underestimate either the number density of QGs by more than an order of magnitude or the duration of their quiescence by a factor two. Overall, these results confirm the existence of an unexpected population of QGs at z>3, and offer the first insights on their formation history. [abridged]
We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0.5<z<1.3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent gala xies at the same redshift. Photometric selection identifies a majority of objects that have clear evidence for a recent short-lived burst of star formation within the last 1.5 Gyr, i.e. post-starburst galaxies, however we show that good quality continuum spectra are required to obtain physical parameters such as burst mass fraction and burst age. Dust attenuation appears to be the primary cause for misidentification of post-starburst galaxies, leading to contamination in spectroscopic samples where only the [OII] emission line is available, as well as a small fraction of objects lost from photometric samples. The 31 confirmed post-starburst galaxies have formed 40-90% of their stellar mass in the last 1-1.5 Gyr. We use the derived star formation histories to find that the post-starburst galaxies are visible photometrically for 0.5-1 Gyr. This allows us to update a previous analysis to suggest that 25-50% of the growth of the red sequence at z~1 could be caused by a starburst followed by rapid quenching. We use the inferred maximum historical star formation rates of several 100-1000 Msun/yr and updated visibility times to confirm that sub-mm galaxies are likely progenitors of post-starburst galaxies. The short quenching timescales of 100-200 Myr are consistent with cosmological hydrodynamic models in which rapid quenching is caused by the mechanical expulsion of gas due to an AGN.
We compare multi-wavelength SFR indicators out to z~3 in GOODS-South. Our analysis uniquely combines U-to-8um photometry from FIREWORKS, MIPS 24um and PACS 70, 100, and 160um photometry from the PEP survey, and Ha spectroscopy from the SINS survey. We describe a set of
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا